mọi người cho mình hỏi có phải sin2a*cos2b - cos2a*sin2b chính là sin2(a-b) phải ko
Tìm số đo hóc của tam giác nếu có a.cosB-b.cosA=a.sinA-b.sinB và sin2A+sin2B+cos2A+cos2B= Căn 2
Giá trị biểu thức P= \(\left(sin2a+sin2b\right)^2+\left(cos2a+cos2b\right)^2\) BIẾT a-b=\(\frac{\pi}{6}\) là
\(P=sin^22a+cos^22a+sin^22b+cos^22b+2sin2a.sin2b+2cos2a.cos2b\)
\(P=2+2\left(sin2a.sin2b+cos2a.cos2b\right)=2+2cos\left(2a-2b\right)\)
\(P=2+2cos\frac{\pi}{3}=3\)
Cho A, B, C là 3 góc 1 tam giác. Chứng minh
a) \(cos2A+cos2B+cos2C=-1-4cosA.cosB.cosC\)
b) \(sin2A+sin2B+sin2C=4.sinA.sinB.sinC\)
\(cos2A+cos2B+cos2C=2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC.cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC\left[cos\left(A-B\right)-cosC\right]-1\)
\(=-2cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]-1\)
\(=-4cosC.cosA.cosB-1\)
\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=-4sinC.sinA.sin\left(-B\right)=4sinA.sinB.sinC\)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho biểu thức: A = sin2(a + b) – sin2a - sin2b. Đưa biểu thức trên về dạng tích:
A. A = 2cosa. sinb.sin( a + b)
B. A = 2.sina.cosb.cos(a + b)
C. A = 2cosa.cosb.cos(a + b)
D. A = 2sina.sinb.cos( a + b)
Chọn D.
Ta có: A = sin2(a + b) –sin2a - sin2b
= ( sina.cosb + cosa.sinb) 2 - sin2a - sin2b
= sin2a.cos2b + 2sina.cosb.cosa.sinb + cos2a.sin2b - sin 2a - sin2b
= sin2a( cos2b - 1) + sin2b( cos2a - 1) + 2.sina.cosa.sinb.cosb
= - sin2a.sin2b - sin2b.sin2a + 2.sina.cosa.sinb.cosb
= 2sina.sinb( cosa.cosb - sina.sinb) = 2.sina.sinb.cos( a + b).
Đưa biểu thức A = sin2(a + b) – sin2a - sin2b về dạng tích :
A. A = 2sina.sinb.cos (a + b)
B. A = 2 sina.cosb cos(a + b)
C. A = 2cosa.sinb.cos(a + b)
D. Đáp án khác
Chọn A.
Sử dụng công thức hạ bậc và biến đổi tổng thành tích ta có :
A = sin2(a + b) – sin2a - sin2b
= -cos2(a + b) + cos( a + b) cos(a - b)
= cos (a +b) [ cos( a - b) – cos(a + b) ]
= 2 sina. sinb.cos(a + b)