cho a/b=1+1/2+1/3+1/4+....+1/1998. CMR achia hết cho 1999
CMR:
1) 19971999 - 19971998 chia hết cho 4
2) 19971998 - 19981999 chia hết cho 4
1) A = 19971999 - 19971998
=> A = 19971998.(1997-1)
=> A = 19971998 . 1996
Vậy a chia hết cho 4 (vì 1996 chia hết cho 4)
2) B = 19971998 - 19981999
Mà 19971998 là số lẻ; 19981999
=> 19971998 - 19981999 là số lẻ
Vậy đề bài sai.
1, Cho A=2=2^2+2^3+...+2^20
Chứng minh
a)A chia hết cho 2
b)Achia hết cho 3
c)A chia hết cho 5
2, Cho n∈N. CMR
a)10^n-1 chia hết cho 9
b)10^n+8chia hết cho 9
c)n^2+n+1ko chia hết cho 4
Mí bn giúp mk nhanh nha, mai mk hc òi
Thank you mí bé
mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!
Cho m/n=1+1/2+1/3+1/4+...+1/1998, với m,n thuộc Z. CM m chia hết cho 1999
A=(11^2n-2^6n)(n^4-1)
CMR AChia hết cho 285 vs n lad stn ko chia hết cho 5
(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
1 CMR:S=[1999+19992+19993+...+19991998]
2CMR các số có dạng abcabc chia hết cho ít nhất 3 số nguyên tố
3.cho p và p+4 là các số nguyên tố [p>3] . CMR p+8 là hợp số
2.
Ta có: abcabc=abc.1001. Mà 1001 chia hết cho 7;11;13 => abc.1001 chia hết cho 7;11;13 là 3 số nguyên tố hay abcabc chia hết cho 3 số nguyên tố 7;11;13(ĐPCM)
3.
Với p thuộc N thì p có 1 trong 3 dạng sau : 3k ; 3k+1 ; 3k+2.
Nếu p=3k thì p chia hết cho 3 và p>3 => p không phải là sô nguyên tố (không t/m đề ra)
Nếu p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3=> p+4 chia hết cho 3 và p+4>3 (vì p>3) =>p+4 không phải là số nguyên tố (không t/m đề ra)
Vậy p=3k+1 (t/m)
Do p=3k+1 nên p+8=3k+1+8=3k+9. Mà 3k+9 chia hết cho 3 => p+8 chia hết cho 3 và p+8>3 (do p>3) => p+8 là hợp số (ĐPCM)
Bạn nên ghi rõ đề bài 1 nha. Chúc bạn học tốt.
cho A=1+(-3)+32+(-33)+...+398+(-399)
a, CMR Achia het cho (-20)
b. CMR 3100 chia cho 4 du 1
Bài 1: Tính tổng
a) S1 = 1 - 2 + 3 - 4 +...+ 1997 - 1998 + 1999
b) S2 = 1 - 4 + 7 - 10 +...-2998 + 3001
Bài 2: Chứng minh rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31
a) S1 = 1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999
=> S1 = (-1) + (-1) + (-1) + ... + (-1) + 1999
=> S1 = (-999) + 1999
=> S1 = 1000
Ta có S1 = (1 - 2) + (3 - 4) + ....... + (1997 - 1998) + 1999
= -1 + -1 + -1 + ..... + -1 + 1999
= -999 + 1999
=1000
1.S1 = 1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999
= (1-2) + (3-4)+...+(1997-1998)+1999
= - 1 + -1 + ...+ -1 + 1999
SH : 1998 - 1 +1
=1998
= 1998 : 2
= 999
TDS: -1 . 999
= -999 + 1999
= 1000
b.S2 = 1 - 4 + 7 - 10 + ... - 2998 + 3001
= (1 - 4) +(7 -10) + ...+(2995 - 2998) + 3001
= -3 + -3 + -3 +...+ -3 + 3001
SH=(2998 - 1) : 3 + 1
= 1000
= 1000 : 2
= 500
= 500 . -3
= -1500 + 3001
= 1501
bài 2 mình ko piết làm
cho A= 1+3+32+33+..........+ 311 a. chứng minh rằng Achia hết cho 4 ;b.chứng minh rằng Achia hết 10;c.chứng minh rằng A chia hết cho 13
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )
A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )
A = 4 + 32 . 4 + ... + 310 . 4
A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )
~ Chúc bạn học giỏi ! ~
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 + 32 ) + ... + ( 39 + 310 + 311 )
A = 13 + ... + 39 . ( 1 + 3 + 32 )
A = 13 + ... + 39 . 13
A = 13 . ( 1 + ... + 39 ) \(⋮\) 13 ( Vì trong tích có một thừa số chia hết cho 13 )
~ Chúc bạn học giỏi ! ~
Cho \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1998}\) với m,n là số tự nhiên
CMR: m chia hết cho 1999. Nêu bài toán tổng quát