Cho phương trình \(\dfrac{2}{5-t}\) - a - t = 2a.(a+2)
Tìm a để phương tình có t = 3 là nghiệm
tìm giá trị tham số a để phương trình \(\frac{2}{5-t}-a-t=2a\left(a+2\right)\)) nhận t=3 là nghiệm
Thay t = 3 vào phương trình, ta được:
\(1-a-3=2a\left(a+2\right)\)
\(\Leftrightarrow-2-a=2a^2+4a\)
\(\Leftrightarrow2a^2+5a+2=0\)
Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)
a) 1/2(x+1)(3-x)+x=3
(2x+1)(1-x)+2x=2
Tìm giá trị tham số a để phương trình 2/5-t -a-t=2a(a+2) nhận t=3 là nghiệm
(x-2)^2 = (2x+3)^2
a, \(\frac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)\left(3-x\right)-\left(3-x\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(\frac{x}{2}+\frac{1}{2}-1\right)=0\)
\(\Leftrightarrow\left(3-x\right)\frac{x-1}{2}=0\Leftrightarrow x=3;x=1\)
b, \(\left(2x+1\right)\left(1-x\right)+2x=2\)
\(\Leftrightarrow\left(2x+1\right)\left(1-x\right)-2\left(1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(1-x\right)=0\Leftrightarrow x=\frac{1}{2};x=1\)
c, Vì t = 3 là nghiệm của phương trình nên thay t = 3 vào phương trình trên ta được :
\(\Rightarrow\frac{2}{5}-3-a-3=2a\left(a+2\right)\Leftrightarrow\frac{2}{5}-6-a=2a\left(a+2\right)\)
\(\Leftrightarrow\frac{2-30-5a}{5}=\frac{10a\left(a+2\right)}{5}\)Khử mẫu :
\(\Rightarrow-28-5a=10a^2+20a\)
\(\Leftrightarrow-10a^2-25a-28=0\) tự làm nốt nhé !!!
d, \(\left(x-2\right)^2=\left(2x+3\right)^2\)
TH1 : \(x-2=2x+3\Leftrightarrow x=-5\)
TH2 : \(x-2=-2x-3\Leftrightarrow x=-\frac{1}{3}\)
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
Cho hai phương trình:
7x/8 - 5(x - 9) = 1/6(20x + 1,5) (1)
2(a - 1)x - a(x - 1) = 2a + 3 (2)
Tìm giá trị của a để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1).
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
Cho phương trình ẩn x : (2a-1)^2-2(a+4)x+5 a+2=0 . Tìm a để phương trình có nghiệm.
Cho phương trình ẩn x : (2a-1)^2-2(a+4)x+5 a+2=0 . Tìm a để phương trình có nghiệm.
Cho phương trình ( 2a-5)2x2 - 2(a-1)x + 3 = 0. Tìm a để phương trình có 2 nghiệm phân biệt.
PT có 2 nghiệm phân biệt:
\(\Delta^'\)> 0
<=> (a - 1)2 - 3(2a - 5)2 > 0
<=> a2 - 2a + 1 - 3(4a2 - 20a + 25) > 0
<=> a2 - 2a + 1 - 12a2 + 60a - 75 > 0
<=> -11a2 + 58a - 74 > 0
<=> \(\frac{-29+\sqrt{27}}{-11}\)< a < \(\frac{-29-\sqrt{27}}{-11}\)
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
a,\(\Delta=\left[-\left(2m+3\right)\right]^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)\(=\)\(4\left(m^2+2m+\dfrac{9}{4}\right)=4\left(m+1\right)^2+5\ge5>0\)
=>pt luôn có 2 nghiệm phân biệt
b,vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+3\\x1x2=m\end{matrix}\right.\)
\(T=\left(x1+x2\right)^2-2x1x2=\left(2m+3\right)^2-2m=4m^2+12m+9-2m\)\(=4m^2+10m+9=4\left(m^2+\dfrac{10}{4}m+\dfrac{9}{4}\right)=4\left[\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{16}\right]\)\(=4\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
dấu"=" xảy ra<=>m=-5/4
Cho phương trình: 3(a-2)x+2a(x-1)=4a+3 (1).a) Giải phương trình (1) với a=-2 .b) Tìm a để phương trình (1) có nghiệm x = l.