số cặp (x,y) nguyên x thỏa mãn : x2+y2=13
Tìm cặp số nguyên x,y thỏa mãn : x2 + 4y2 = x2 y2 \(-\) 2xy
\(x^2+4y^2=x^2y^2-2xy\)
\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)
\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)
\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)
\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)
Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)
TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)
Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)
C ó b a o n h i ê u c ặ p s ố n g u y ê n x ; y t h ỏ a m ã n x 2 + 102 = y 2
A . 0
B . 1
C . 2
D . 3
Ta có:
x 2 + 102 = y 2 ⇔ y 2 - x 2 = 102 N h ậ n t h ấ y h i ệ u h a i b ì n h p h ư ơ n g l à m ộ t s ố c h ẵ n N ê n x , y c ù n g l à s ố c h ẵ n h o ặ c c ù n g l à s ố l ẻ S u y r a y - x ; y + x l u ô n l à s ố c h ẵ n L ạ i c ó y 2 - x 2 = 102 ⇔ y - x y + x = 102 M à y - x v à y + x c ù n g l à s ố c h ẵ n S u y r a y - x y + x c h i ế t c h o 4 m à 102 k h ô n g c h i a h ế t c h o 4 N ê n k h ô n g t ồ n t ạ i c ặ p x ; y t h ỏ a m ã n đ ề b à i .
Đáp án cần chọn là :A
tìm các cặp số nguyên x, y thỏa mãn: y2(x2-x+1)+xy = 3x-1
tìm các cặp số nguyên (x,y) thỏa mãn phương trình sau : x2 - y2= 2017
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)
Tìm tất cả các cặp số nguyên dương (xy) thỏa mãn x2+y2-2(x+y) = xy
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Tiếp tục phần tiếp theo
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)
⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ 1 , giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x 2 + y 2 + 4 x + 6 y + 13 - m = 0 thuộc tập nào sau đây?
A. [8;10]
B. [5;7]
C. [1;4]
D. [-3;0]
Đáp án A
Ta có, giả thiết log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính R 1 = 2
Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m là đường tròn tâm I(-2;-3); R 2 = m
Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 ( 2 x + 2 y + 5 ) ≥ 1 giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x2 + y2 + 4x + 6y + 13 - m = 0 thuộc tập nào sau đây?
Đáp án A
Ta có, giả thiết
là miền trong đường tròn tâm I(1;1) bán kính R1 = 2
Và
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
Tìm tất cả các số nguyên x, y thỏa mãn x2+y2+xy-x-y=1
tìm cặp số nguyên x y thỏa mãn
x2-x(y+5)=-4y-9\(\Leftrightarrow x^2-xy-5x+4y+9=0\)
\(\Leftrightarrow\left(x^2-xy\right)-\left(4x-4y\right)-x+9=0\)
\(\Leftrightarrow x\left(x-y\right)-4\left(x-y\right)-x+9=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4\right)-\left(x-4\right)+5=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-y-1\right)=-5\)
Do \(x;y\in Z\Rightarrow\left(x-4\right);\left(x-y-1\right)\in Z\)
Ta có các trường hợp sau
+ TH1:
\(\left\{{}\begin{matrix}x-4=1\\x-y-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=9\end{matrix}\right.\)
+ TH2:
\(\left\{{}\begin{matrix}x-4=-1\\x-y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
+ TH3:
\(\left\{{}\begin{matrix}x-4=5\\x-y-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)
+ TH4:
\(\left\{{}\begin{matrix}x-4=-5\\x-y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)