Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Panda 卐
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Huyền Nguyễn
Xem chi tiết
Songoku
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Khách vãng lai đã xóa
Nguyễn Thành Nhân
Xem chi tiết
BoSo WF
Xem chi tiết
YangSu
12 tháng 4 2022 lúc 20:29

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

YangSu
12 tháng 4 2022 lúc 20:32

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

Tiến Hoàng Minh
Xem chi tiết
Phạm Trang
Xem chi tiết

\(\frac{1}{\left(x-1\right)}-\frac{3x^2}{x^3-1}=\frac{2x}{\left(x^2+x+1\right)}\)(x khác 1)

\(\frac{x^2+x+1-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow-2x^2+x+1=2x^2-2x\)

\(\Leftrightarrow4x^2+x-1=0\)

\(=>x=\frac{-1\pm\sqrt{17}}{8}\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
3 tháng 4 2020 lúc 20:36

hmm.. 

Bạn kia sai xíu nhé :33

\(-2x^2+x+1=2x^2-2x\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow4x\left(1-x\right)+\left(1-x\right)=0\)

\(\Leftrightarrow\left(4x+1\right)\left(1-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+1=0\\1-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{4}\left(tm\right)\\x=1\left(0tm\right)\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 20:12

=>\(\dfrac{x-2-3x+3}{\left(x-1\right)\left(x-2\right)}=\dfrac{-1}{\left(x-1\right)\left(x-2\right)}\)

=>-2x+1=-1

=>-2x=-2

=>x=1(loại)

nood
Xem chi tiết
Uyên Tử
9 tháng 3 2023 lúc 8:12

1. x(x-3)-(x+2)(x-1)=3 <=> x- 3x - x2 - x + 2 = 3 => 4x = -1 => x = 1/4 

2. 

a) x = 0, x=1 (2 nghiệm, loại)

b) x2 + 1 > 0 => x = - 2 (1 nghiệm, chọn b)

c) <=> x(x-3) = 0 => x = 0, x=3 (2 nghiệm, loại)

d) (x-1)2 + 2 > 0 => Vô nghiệm (loại)

Ngọc Hoàng Khương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:32

\(ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow b^2-1+2ab=2a\\ \Leftrightarrow2ab-2a+b^2-1=0\\ \Leftrightarrow2a\left(b-1\right)+\left(b-1\right)\left(b+1\right)=0\\ \Leftrightarrow\left(2a+b+1\right)\left(b-1\right)=0\\ \Leftrightarrow b-1=0\left(2a+b+1>0\right)\\ \Leftrightarrow b=1\\ \Leftrightarrow x^2-x+1=1\\ \Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)