Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Inequalities
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2020 lúc 17:07

Không nhìn thấy bất cứ chữ nào của đề bài cả 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2019 lúc 16:33

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 2 2018 lúc 13:38

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2017 lúc 3:19

Chọn đáp án A

Lê Bảo Nghiêm
Xem chi tiết
Cao Thành Danh
11 tháng 1 2021 lúc 22:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2018 lúc 8:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2018 lúc 17:26

Đáp án B

Vũ Tuấn Minh
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 5 2021 lúc 22:28

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Nguyễn Việt Lâm
24 tháng 5 2021 lúc 22:29

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2019 lúc 16:35