Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen THI LAM GIANG
Xem chi tiết
Bùi Thế Hào
17 tháng 3 2017 lúc 20:53

Vô số, với x là số lẻ và lớn hơn 2

Bùi Thế Hào
17 tháng 3 2017 lúc 20:54

Với mọi x lẻ và x>2

Mai Thành Đạt
Xem chi tiết
Hoàng Phúc
18 tháng 6 2016 lúc 10:38

\(x^2-2y^2=5\Leftrightarrow x^2-\left(\sqrt{2}.y\right)^2=5\Rightarrow\left(x-\sqrt{2}.y\right)\left(x+\sqrt{2}.y\right)=5=1.5=5.1\) (vì đề yêu cầu tìm nghiệm nguyên dương nên chỉ lấy những ước dương của 5)

Mà x;y nguyên dương nên hiển nhiên \(x-\sqrt{2}.y< x+\sqrt{2}.y\)

Do đó \(\left(x-\sqrt{2}.y\right)\left(x+\sqrt{2}.y\right)=1.5\)

+\(x-\sqrt{2}.y=1\) \(\Rightarrow x=\sqrt{2}.y+1\left(1\right)\)

+\(x+\sqrt{2}.y=5\Rightarrow x=5-\sqrt{2}.y\)

Cộng theo vế của đẳng thức trên ta đc:

\(2x=\sqrt{2}.y+1+3-\sqrt{2}.y=4\Rightarrow x=2\)

Từ đó suy ra \(y=\frac{\sqrt{2}}{2}\)

Vì x;y nguyên dương nên PT vô nghiệm

UEFA Euro đến rồi
18 tháng 6 2016 lúc 9:30

mình chưa học lớp 8 nhe bạn mình xin lỗi mong bạn thông cảm

Võ Đông Anh Tuấn
18 tháng 6 2016 lúc 9:30

y chia hết cho 5=> x chia hết cho 5=> vế trái chia hết cho 25, vô lí

y chia 5 dư 1;4 thì 2y^2 chia 5 dư 2 nên x^2 chia 5 dư 2, vô lí

y chia 5 dư 2,3 thì 2y^2=2 chia 5 dư 3 nên x^2 chia 5 dư 3, vô lí

Vậy pt k có ng nguyên

vu manh hung
Xem chi tiết
Phạm Thành Đông
27 tháng 3 2021 lúc 13:39

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

Khách vãng lai đã xóa
Phạm Thành Đông
27 tháng 3 2021 lúc 13:40

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.

Khách vãng lai đã xóa
Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
hello sun
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

monsiaur kite
Xem chi tiết

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

Khách vãng lai đã xóa
SANS:))$$^
1 tháng 3 2022 lúc 7:28

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

Khách vãng lai đã xóa

\(x^2=y^2+2y+13\)

\(x^2=y^2+2y+1+12\)

\(x^2=\left(y+1\right)^2+12\)

\(x^2-\left(y+1\right)^2=12\)

\(\left(x-y-1\right)\left(x+y+1\right)=12\)

Vì \(x,y\in N\Rightarrow x+y+1>x-y-1\)

Mà \(\left(x-y-1\right),\left(x+y+1\right)\inƯ\left(12\right)\)

Đến đây lập bảng là xog r bạn.

Khách vãng lai đã xóa
Hoàng Văn Thái
Xem chi tiết
loancute
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:57

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

tống thị quỳnh
Xem chi tiết