Tìm x -16/x-2=-4/x+2
bài 1 tìm x bt
( x^2 - 4x + 16 ) ( x + 4 ) - x ( x + 1 ) ( x + 3 ) + 3x^2 = 0
bài 2 chứng minh
a, ( x + 2 ) ( x - 2 ) ( x^2 + 4 ) = x^4 - 16
b, ( x^2 - xy + y^2 ) ( x + y ) = x^3 + y^3
gúp mik với
Bài 2:
a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4-16\)
b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
Bài 1:
Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)
\(\Leftrightarrow-x^2-3x+64=0\)
\(\Leftrightarrow x^2+3x-64=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)
Bài 2: Tìm x, biết: a) (x+2)(x² -2x+4)-x(x²+2)=15 b) (x-2)³-(x-4)(x² + 4x+16) + 6(x+1)=49 c) (x - 1)³ + (2 - x)(4 + 2x + x²)+ 3x(x + 2) = 16 d) (x - 3)³ - (x - 3)(x² + 3x + 9) + 9(x + 1)² = 15
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
Bài 1 Tìn x : x/16*(2017-1)=2
Bài 2 tìm x : x*15/16-x*4/16=2
Bài 3 Tìm x : 1-(5/4/9+x+7/7/18):15/3/4=0
( Dấu / là dấu gạch phân số Và 5/4/9 ; 15/3/4 ; 7/7/18 Là hỗn số )
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
1- (5\(\dfrac{4}{9}\) +x+7\(\dfrac{7}{18}\)) : 15\(\dfrac{3}{4}\) = 0
1- (\(\dfrac{49}{9}+x+\dfrac{133}{18}\)) : \(\dfrac{63}{4}=0\)
(\(\dfrac{49}{9}+\dfrac{133}{18}\)+\(x\) ) : \(\dfrac{63}{4}\) = 1 - 0
(\(\dfrac{77}{6}\) + \(x\) ) : \(\dfrac{63}{4}\) = 1
\(\dfrac{77}{6}+x\) = 1 x \(\dfrac{63}{4}\)
\(\dfrac{77}{6}\) + \(x\) = \(\dfrac{63}{4}\)
\(x\) = \(\dfrac{63}{4}\) - \(\dfrac{77}{6}\)
\(x=\) \(\dfrac{35}{12}\)
Cho biểu thức
A= \(\dfrac{2}{\sqrt{x}+4}-\dfrac{3}{\sqrt{x}-4}-\dfrac{2\sqrt{x}+16}{16-x}\:\:\:\left(x\ge0,x\ne16\right)\)
a) Rút gọn
b) Tìm giá trị A khi x = \(4-2\sqrt{3}\)
Lời giải:
a.
\(A=\frac{2(\sqrt{x}-4)-3(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{-\sqrt{x}-20}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}\\ =\frac{\sqrt{x}-4}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{1}{\sqrt{x}+4}\)
b. Khi $x=4-2\sqrt{3}=(\sqrt{3}-1)^2\Rightarrow \sqrt{x}=\sqrt{3}-1$
$A=\frac{1}{\sqrt{3}-1+4}=\frac{1}{\sqrt{3}+3}$
(x^2+4*x)/(x^2-16)=(a*x+b)/(4-x) tìm a+b=
Tìm x, biết:
2/(x+2).(x+4) + 4/(x+4).(x+8) + 8/(x+8).(x+16) = x/(x+2).(x+14)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5
Bài 2: Tìm x biết:
1,x\(^2\)+4x+4=25
2,(5-2x)\(^2\)-16=0
3,(x-3)\(^3\)-(x-3)(x\(^2\)+3x+9)+9(x+1)\(^2\)=15
4,3(x+2)\(^2\)+(2x-1)\(^2\)-7(x-3)9x+3)=36
5,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
6,(2x+1)\(^2\)-4(x+2)\(^2\)=9
7,(x+3)\(^{^{ }2}\)-(x-4)(x+8)=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Tìm x biết : x-2/4 = -16/2-x
\(x-\frac{2}{4}=\frac{-16}{2}-x\)
\(x-\frac{1}{2}=-8-x\)
\(x+x=-8+\frac{1}{2}\)
\(2x=\frac{-15}{2}\)
\(x=\frac{-15}{4}\)
vậy \(x=\frac{-15}{4}\)
Ta có : \(\frac{x-2}{4}=\frac{-16}{2-x}\)
\(\Rightarrow\left(x-2\right)\left(2-x\right)=-16.4=-64=-8.8\)
Ta thấy (x - 2) và (2 - x) là 2 số đối nhau .
\(\Rightarrow x-2=8\)
\(\Rightarrow x=10\)
\(x-\frac{2}{4}=\frac{-16}{2}-x\)
\(x+x=\frac{-16}{2}+\frac{2}{4}\)
\(2x=-8+\frac{1}{2}\)
\(2x=\frac{-15}{2}\)
\(x=\frac{-15}{4}\)
vậy \(x=\frac{-15}{4}\)
tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^
tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^2
ai giúp mk vs