Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kirito

Những câu hỏi liên quan
Chu Tuấn Nghĩa
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
2 tháng 6 2015 lúc 9:33

x2+2xy+y2=9

=>(x2+xy)+(xy+y2)=9

=>x(x+y)+y(x+y)=9

=>(x+y)(x+y)=3.3

=>x+y=3

x2-2xy+y2=1

=>(x2-xy)+(y2-xy)=1

=>x(x-y)+y(y-x)=1

=>x(x-y)-y(x-y)=1

=>(x-y)(x-y)=1.1

=>x-y=1

x+y+x-y=3+1

=>2x=4

=>x=2

=>y=2-1

=>y=1

vậy x=2 và y=1

Nguyễn Lưu Hà Phương
Xem chi tiết
Kiên-Messi-8A-Boy2k6
9 tháng 3 2018 lúc 21:32

Ta có;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Rightarrow\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)

\(\Rightarrow2.y+2x+1=xy\)

\(\Rightarrow2x+1=y.\left(x-2\right)\)

\(\Rightarrow2.\left(x-2\right)+5=y.\left(x-2\right)\)

\(\Rightarrow\left(2-y\right).\left(x-2\right)=5\)

Bn kẻ bảng nha

Đô Mỹ Diệu Linh
Xem chi tiết
Yen Phuoq
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:16

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:28

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Buddy
Xem chi tiết
@DanHee
23 tháng 7 2023 lúc 15:35

\(\left(x+y-1\right)\left(x+y+1\right)=x^2+xy-x+xy+y^2-y+x+y-1\\ =x^2+\left(xy+xy\right)+\left(-x+x\right)+y^2+\left(-y+y\right)-1\\ =x^2+2xy+y^2-1\\ =>B\)

nguyễn bích thuỳ
Xem chi tiết
Thơ Nụ =))
Xem chi tiết
Toru
2 tháng 2 lúc 12:13

\(2xy^2+x+y-1=x^2+2y^2+xy\\\Leftrightarrow 2xy^2+x+y-1-x^2-2y^2-xy=0\\\Leftrightarrow(2xy^2-2y^2)-(xy-y)-(x^2-x)=1\\\Leftrightarrow2y^2(x-1)-y(x-1)-x(x-1)=1\\\Leftrightarrow(x-1)(2y^2-y-x)=1\)

Vì \(x,y\) nguyên \(\Rightarrow x-1;2y^2-y-x\) có giá trị nguyên

Mà: \(\left(x-1\right)\left(2y^2-y-x\right)=1\)

Do đó ta có các trường hợp xảy ra là:

\(+,\left\{{}\begin{matrix}x-1=1\\2y^2-y-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(2y-3\right)\left(y+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y\in\left\{\dfrac{3}{2};-1\right\}\end{matrix}\right.\)

Mà \(x,y\) nguyên nên: \(x=2;y=-1\)

\(+,\left\{{}\begin{matrix}x-1=-1\\2y^2-y-x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\left(y-\dfrac{1}{4}\right)^2+\dfrac{7}{8}=0\left(\text{vô lí}\right)\end{matrix}\right.\)

Vậy \(x=2;y=-1\) là các giá trị cần tìm.

\(\text{#}Toru\)

 

★ɮεşէ  Ꮰʉŋɠℓε VŇ★
Xem chi tiết
Nguyễn Anh Huy
16 tháng 11 2019 lúc 19:49

bấn MT

Khách vãng lai đã xóa
★ɮεşէ  Ꮰʉŋɠℓε VŇ★
16 tháng 11 2019 lúc 19:50

cần gấp

Khách vãng lai đã xóa
hồ nhật anh
16 tháng 11 2019 lúc 21:30
a,(x-1)²=0 (2x+y-1)=0
Khách vãng lai đã xóa
Hien Nguyen
Xem chi tiết

Giải:

b) \(\left(2x+1\right).\left(y-3\right)=10\)

\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)  

Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)

Ta có bảng giá trị: 

2x+115
y-351
x12
y84

Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\) 
c) \(2xy-x+2y=13\) 

\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\) 
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\) 

Ta có bảng giá trị:

x+1124
2y-113
x113
y12

Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\) 

Giải: (tiếp)

d) \(6xy-9x-4y+5=0\) 

\(\Rightarrow3x.\left(2y-3\right)-4y=-5\) 

\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\) 

\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)

\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\) 

Ta có bảng giá trị:

3x-21
2y-31
x1
y2

Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\) 

e) \(2xy-6x+y=13\)

\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\) 

\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\) 

Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!

f) \(2xy-5x+2y=148\) 

\(\Rightarrow2y.\left(x+1\right)-5x-5=143\) 

\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\) 

\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\) 

Ta có bảng giá trị:

x+111113143
2y-514313111
x01012142
y74983

Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\) 

Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! khocroi)