Chứng minh n3 +17n ⋮ 6 với mọi n ∈ Z
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
bài 58: chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Chứng minh rằng \(\frac{17n-6}{12}\) không là số tự nhiên với mọi số tự nhiên n.
giúp mình với !
Chứng minh:
a) 50 n + 2 – 50 n + 1 chia hết cho 245 với mọi số tự nhiên n.
b) n 3 - n chia hết cho 6 với mọi số nguyên n.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
3.Chứng tỏ a=n^3+17n chia hết cho 6 với n thuộc Z
Trần Long Tăng
Ta có :
\(n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n^2-1\right)+12n\)
\(=\left(n-1\right)\left(n-1\right)n+12n\)
Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .
Mà 12n chia hết cho 6 .
\(\Rightarrow n^3+11n\)chia hết cho 6 .
Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức
Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2
B=n3+17n=n3-n+18n
vì 18n chia hết cho 6 (1)
=> ta phải chứng minh n3-n chia hết cho 6
ta có: n3-n=n(n2-1)=n(n-1)(n+1)
vì tích của 2 số tự nhiên liên tiếp chi hết cho 6 (2)
từ (1) và (2)=> B chia hết cho 6
Cho A = n6 + 10n4 + n3 + 98n – 6n5 – 26 và B = 1 + n3 – n. Chứng minh với mọi n nguyên thì thương của phép chia A cho B là bội số của 6.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm