\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Chứng minh rằng \(n^3-n\) chia hết cho 6 với mọi số nguyên n ?
chứng minh rằng : n^3-n chia hết cho 6 với mọi số nguyên n
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
Chứng minh rằng \(\left(5n+2\right)^2-4\) chia hết cho 5 với mọi số nguyên n ?
Chứng minh rằng với mọi số nguyên a
a3 +11a chia hết cho 6
Chứng minh rằng với mọi số nguyên a
a3 -7a chia hết cho 6
Chứng minh rằng : Với mọi số nguyên n thì \(n^3-3n^2+2n\) luôn chia hết cho 6
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên
•Chứng minh rằng n^3 - n chia hết cho 6 với mọi nguyên n•
Làm giúp mọi nhé :3 thank😊