cho A =2014^2015+1/2014^2015+1 và B =2014^2014+1/2014^2013+1
So sánh A và B ta được A..........B
so sánh A=2014^2014+1/2014^2015+1 và B=2014^2013+1/2014^2014+1
Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)
\(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)
Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)
=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)
=> \(A< B\)
Cho a^2014 + b^2014 + c^2014 =1 và a^2015 + b^2015 + c^2015 =1. Tính tổng A= a^2013+b^2014+c^2015
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
so sánh A và B biết:A= 2013 x 2014-1/2013 x 2014 ,B=2014x2015 -1 / 2014 x 2015
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
So sánh các biểu thức sau: A =2013+2014/2014+2015 và B=2013/2014 + 2014/2015
A=\(\dfrac{2013+2014}{2014+2015}=\dfrac{2013}{2014+2015}+\dfrac{2014}{2014+2015}\)
B=\(\dfrac{2013}{2014}+\dfrac{2014}{2015}\)
Vì \(\dfrac{2013}{2014}>\dfrac{2013}{2014+2015}\); \(\dfrac{2014}{2015}>\dfrac{2014}{2014+2015}\) nên B>A
so sánh A và B
A=2013+2014 / 2014+2015
B=2013+2014 / 2014+2015
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
Cho A=20152015+1/20152014+1' B=20152014+1/20152013+1. Hãy so sánh A và B
So sánh A và B biết:
\(A=\frac{2014^{2014}+1}{2014^{2015}+1}\)
\(B=\frac{2014^{2013}+1}{2014^{2014}+1}\)
Mình làm thế này có đúng không:
Ta có: \(A=\frac{2014^{2014}+1}{2014^{2015}+1}=\frac{2014^{2014}\cdot1+1}{2014^{2014}\cdot2014+1}=\frac{1+1}{2014+1}\) (1)
\(B=\frac{2014^{2013}+1}{2014^{2014}+1}=\frac{2014^{2013}\cdot1+1}{2014^{2014}\cdot2014+1}=\frac{1+1}{2014+1}\)(2)
Từ (1) và (2) suy ra A=B
Các bạn cho mình ý kiến nhoa ^^
Đầu tiên bạn phải chứng minh: nếu a/b>1 thì a/b>(a+m)/(b+m)
Để mình chứng minh cho luôn nè:
A/b>1
=>a>b
=>am>bm (m thuộc N)
=>ab+am>ab+bm
=>a(b+m)>b(a+m)
=>[a(b+m)]/[b(b+m)]>[b(a+m)]/[b(b+m)]
=>a/b>(a+m)/(b+m)
Rồi bạn cộng tử của A với 2013 và mẫu của A với 2013, khi đó ta được 1 phân số bé hơn A. Rút gọn phân số đó thì ta được B.
Vậy suy ra A>B