so sanh 4+\(\sqrt{33}va\sqrt{29}+\sqrt{14}\)
so sanh 4+\(\sqrt{33}\)va \(\sqrt{29}\)+\(\sqrt{14}\)
=3.74165738 chac 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
So sanh: \(4+\sqrt{33}\) va \(\sqrt{29}+\sqrt{14}\)
Ta co:\(4+\sqrt{33}=\approx9,744562647\)
\(\sqrt{29}+\sqrt{14}=\approx9,126822194\)
Vi 9,744562647>9,126822194 nen \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
SO SANH :
4 + \(\sqrt{33}\) va \(\sqrt{29}+\sqrt{14}\)
căn ra số dữ quá *_*!!!!!!!
duyệt đi
Ta có :4+\(\sqrt{33}\) = \(\sqrt{16}+\sqrt{33}\)
Mà \(\sqrt{16}>\sqrt{14},\sqrt{33}>\sqrt{29}\)
Nên \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Hay \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
so sanh:\(4+\sqrt{33}và\sqrt{29}+\sqrt{14}\)
So sánh \(4+\sqrt{33}va\sqrt{29}+\sqrt{14}\)
\(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Có: \(\sqrt{16}>\sqrt{14}\)
\(\sqrt{33}>\sqrt{29}\)
=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
1. So sánh
a) \(4+\sqrt{33}va\sqrt{29}+\sqrt{14}\)
b) \(\sqrt{23}+\sqrt{15}va\sqrt{91}\)
a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)
so sánh
a) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
b) \(\sqrt{26}-\sqrt{3}-\sqrt{2009}\) và -42
a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)
\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)
mà 49>43 và 528>406
nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)
=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
So sánh
4 + \(\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
So sánh \(4+\sqrt{33}\)và \(\sqrt{29}+\sqrt{14}\)nhanh hộ mình nha
ta có:
căn 36=6
căn 25=5
=>3<căn 33<4
còn lại tự lm nhé!
\(\text{Ta có : }\hept{\begin{cases}4>\sqrt{14}\left(\sqrt{16}>\sqrt{14}\right)\\\sqrt{33}>\sqrt{29}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Vậy }4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)