Từ điểm M nằm ngoài đường tròn (O;R).Vẽ tiếp tuyến MA, MB và cát tuyến MEF với đường tròn (O).(A, B là 2 tiếp điểm, ME<MF, tia MF nằm giữa hai tia Ma, MO).Dây AC song song EF. Gọi I là giao điểm BC và EF.cm I là trung điểm EF
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
=>MC/MO=MH/MD
=>ΔMCH đồng dạng với ΔMOD
=>góc MCH=góc MOD
=>góc HOD+góc HCD=180 độ
=>HODC nội tiếp
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Từ M vẽ 2 tiếp tuyến MA, MB (A,B là tiếp điểm). Đường thẳng qua M cắt đường tròn (O) tại C, D (MC<MD) sao cho điểm O nằm trong tam giác BCD. Vẽ đường kính CE của đường tròn (O). Gọi S là giao điểm của EA và BC
a) Cm tứ giác MAOB nội tiếp và OM vuông góc AB
b) Cm tam giác OAM đồng dạng CAS
c) Cm tam giác OAC và MAS đồng dạng và tam giác MAS cân
d) Gọi N là giao điểm của MO và AE. Cm tứ giác BSMN nội tiếp và ND vuông góc AD
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
b: góc CAE=1/2*180=90 độ
Xét ΔOAM vuông tại A và ΔCAS vuông tại A có
góc AOM=góc ACS
=>ΔOAM đồng dạng với ΔCAS
Cho đường tròn (O) và điểm M nằm ngoài đường tròn(O,R) với OM>2R, từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) ( A và B là hai tiếp điểm), vẽ cát tuyến MEF của đường tròn (O) (E nằm giữa M và F). Gọi H là giao điểm của MO và AB.
a. Chứng minh tứ giác MAOB nội tiếp đường tròn, xác định tâm của đường tròn đó.
b.Chứng minh MA2 = ME.MF và MH.MO = ME.MF
c. lấy điểm P thuộc cung AB nhỏ. Vẽ tiếp tuyến P cắt MA, MB lần lượt tại K và D, vẽ OK, OD lần lượt cắt AB tại Q và N. Chứng minh KN, DQ, OP đồng quy .
Cho đường tròn \(\left(O\right)\) và điểm \(M\) nằm ngoài đường tròn. Từ \(M\), vẽ các tiếp tuyến \(MA,MB\) (\(A,B\) là các tiếp điểm). Lấy \(I\) nằm trong cung nhỏ \(AB\) (\(I\) khác \(A,B\)). Từ \(I\), vẽ tiếp tuyến thứ ba của đường tròn \(\left(O\right)\), tiếp tuyến đó cắt \(MA,MB\) tại \(E,F\). Cho \(\hat{AOB}=120^o\), tìm giá trị nhỏ nhất của \(S_{OEF}\).
Cho đường tròn (O); điểm M nằm ngoài đường tròn (O). Từ M dựng hai tiếp tuyến MA và MB. Tia MO cắt đường tròn tại N ( N nằm trên cung lớn AB). Khi đó, tam giác NAB là:
A. Tam giác vuông
B. Tam giác đều
C. Tam giác cân
D. Tam giác tù
Đáp án C
Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)
Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)
Từ (1) và (2) suy ra: OM là đường trung trực của AB.
Ta có điểm N thuộc đường trung trực của AB nên NA = NB
Suy ra, tam giác NAB là tam giác cân tại N
1. cho đường tròn (O) và điểm M nằm ngoài (O). Từ điểm M kẻ hai tiếp tuyến MA,MC (A,C là các tiếp điểm ) tới đường tròn(O) .Từ điểm M kẻ cát tuyến MBD (B nằm giữa M và D, MBD ko đi qua O). gọi H là giao điểm của OM và AC . từ C kẻ đường thẳng song song với BD cắt đường tròn(O) tại E (E khác C) , gọi K là giao điểm của AE và BD . chứng minh
a, Tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
a) Xét tứ giác OAMC có
\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
1. cho đường tròn (O) và điểm M nằm ngoài (O). Từ điểm M kẻ hai tiếp tuyến MA,MC (A,C là các tiếp điểm ) tới đường tròn(O) .Từ điểm M kẻ cát tuyến MBD (B nằm giữa M và D, MBD ko đi qua O). gọi H là giao điểm của OM và AC . từ C kẻ đường thẳng song song với BD cắt đường tròn(O) tại E (E khác C) , gọi K là giao điểm của AE và BD . chứng minh
a, Tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
a: góc OAM+góc OCM=180 độ
=>OAMC nội tiếp
b: CE//BD
=>góc AKM=góc AEC=góc ACM
=>AKCM nội tiếp
=>A,K,C,M cùng nằm trên 1 đường tròn
=>góc OKM=90 độ
=>K là trung điểm của BD
b1: cho đường tròn tâm O, 2 dây AB, CD bằng nhau. Các đường thẳng AB, CD cắt nhau tại S. Ở bên ngoài đường tròn sao cho A nằm giữa S và B, C nằm giữa S và D. CM:
a, SC là tia phân giác của góc ÁC
b, SA=SC
b2: cho 1 đường tròn tâm O và điểm M nằm ngoài đường tròn tâm O. Tia MO cắt đường tròn tâm O tại A và B (A nằm giữa M và O). CMR:
a, MA là khoảng cách nhỏ nhất từ M tới các điểm của đường tròn tâm O
b, MB là khoảng cách lớn nhất từ M tới các điểm của đường tròn tâm O