Tính \(B\)biết:
\(\left(x^{2007}+3x^{2006}-1\right)^{2007}\)tại \(x=-3\)
tính B=\(\left(x^{2007}+3x^{2006}-1\right)^{2007}\) tại x =-3
B=\(\left(x^{2007}+3x^{2006}-1\right)^{2007}\)
\(B=\left[\left(-3^{2007}\right)+3\left(-3^{2006}\right)-1\right]^{2007}\)
\(B=\left[\left(-3^{2007}\right)+3.3^{2006}-1\right]^{2007}\)
\(B=\left[\left(-3^{2007}\right)+3^{2007}-1\right]^{2007}\)
\(B=\left(-1\right)^{2007}=\left(-1\right)\)
Ta có: \(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\)
Thay x = -3 vào B ta có:
\(B=\left(\left(-3\right)^{2007}+3\left(-3\right)^{2006}-1\right)^{2007}\)
=>\(B=\left(\left(-3\right)^{2007}+3\cdot3^{2006}-1\right)^{2007}\)
=>\(B=\left(\left(-3\right)^{2007}+3^{2007}-1\right)^{2007}\)
=>\(B=\left(0-1\right)^{2007}\)
\(=>B=\left(-1\right)^{2007}=-1\)
tìm giá trị các đa thức sau
\(A=x^{15}+3x^{14}+5\) biết x+3=0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\) biết x= -3
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)
Giá trị của biểu thức \(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\) tại x = -3 là
Giá trị của biểu thức \(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\) tại \(x=-3\) là B =
Tại x= - 3
=> \(B=\left[\left(-3\right)^{2017}+3\left(-3\right)^{2016}-1\right]^{2017}\)
=> \(B=\left[\left(-3\right)^{2017}+3^{2017}-1\right]^{2017}\)
=> \(B=\left(-1\right)^{2017}\)
=> B = - 1
Ta có:
\(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\)
\(B=\left(\left(-3\right)^{2007}+3\left(-3\right)^{2006}-1\right)^{2007}\)
\(B=\left(\left(-3\right)^{2007}+3\left(3\right)^{2006}-1\right)^{2007}\)
\(B=\left(\left(-3\right)^{2007}+3^1\left(3\right)^{2006}-1\right)^{2007}\)
\(B=\left(\left(-3\right)^{2007}+3^{1+2006}-1\right)^{2007}\)
\(B=\left(\left(-3\right)^{2007}+3^{2007}-1\right)^{2007}\)
\(B=\left(0-1\right)^{2007}\)
\(B=\left(-1\right)^{2007}\)
\(B=1\)
\(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\)
\(\Rightarrow B=\left[\left(-3\right)^{2007}+3.\left(-3\right)^{2006}-1\right]^{2007}\)
\(\Rightarrow B=\left[\left(-3\right)^{2006}.\left(3+\left(-3\right).1\right)-1\right]^{2007}\)
\(\Rightarrow B=\left[\left(-3\right)^{2006}.0-1\right]^{2007}\)
\(\Rightarrow B=\left(0-1\right)^{2007}\)
\(\Rightarrow B=-1^{2007}\)
\(\Rightarrow B=-1\)
Tìm x biết : \(\frac{\left(2006-x\right)^2+\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}{\left(2006-x\right)^2-\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}=\frac{19}{49}\)
Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha
Giá trị của biểu thức \(B=\left(x^{2007}+3x^{2006}-1\right)^{2007}\)tại \(x=-3\)là \(B=\)
Khi x=-3 thì biểu thức:
\(\Rightarrow B=\left(-3^{2007}+3.\left(-3\right)^{2006}-1\right)^{2007}\)
\(\Rightarrow B=.............\)
máy tính tính cũng không ra nha bạn
Thay \(x=-3\) vào biểu thức B ta được :
\(B=\left(-3^{2007}+3.\left(-3\right)^{2006}-1\right)^{2007}\)
\(=\left(-3^{2007}+3^{2007}-1\right)^{2007}\)
\(=-1^{2007}\)
\(=-1\)
Thay x =\(-3\)vào biểu thức B ta được :
\(B=\left(-3^{2017}+3.\left(-3\right)^{2016}-1\right)^{2007}\)
\(B=\left(-3^{2007}+3^{2007}-1\right)^{2007}\)
\(B=\left(-1\right)^{2007}\)
\(B=-1\)
Cho \(f\left(x\right)=\frac{4^x}{4^x+2}\)
tính \(S=f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+........+f\left(\frac{2006}{2007}\right)\)
Ta có nhận xét : \(a+b=1\) thì
\(f\left(a\right)+f\left(b\right)=\frac{4^a}{4^a+2}+\frac{4^b}{4^b+2}=\frac{4^a\left(4^a+2\right)+4^b\left(4^b+2\right)}{\left(4^a+2\right)\left(4^b+2\right)}\)
\(=\frac{4^{a+b}+2.4^a+4^{a+b}+2.4^b}{4^{a+b}+2.4^a+2.4^b+4}=\frac{2.4^a+2.4^b+8}{2.4^a+2.4^b+8}=1\)
Áp dụng kết quả trên ta có :
\(S=\left[f\left(\frac{1}{2007}\right)+f\left(\frac{2006}{2007}\right)\right]+\left[f\left(\frac{2}{2007}\right)+f\left(\frac{2005}{2007}\right)\right]+...+\left[f\left(\frac{1003}{2007}\right)+f\left(\frac{1004}{2007}\right)\right]\)
Vâyu \(S=1+1+1+...+1=1003\) (có 1003 số hạng)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^
1)Giá trị biểu thức của B là
\(\left(x^{2007}+3x^{2006}+1\right)^{2007}\)tại x=-3
2)Tập hợp các số nguyên a để:\(\dfrac{a^2+a+3}{a+1}\in Z\)
2)Biết \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\left(x,y\ne0\right)\).Tìm \(\dfrac{x}{y}\)
Giải ra giúp mk nha!Nhanh nhé mk gấp lắm!!
1) 1
2) \(a\in\left\{-4;-2;0;2\right\}\)
3)\(\dfrac{7}{9}\)
tick nha!!!