cho đa thức P(x)=ax^+bx^2+cx+d ( a b c d thuộc R) biết 13-6b+4c=0
chứng minh P(1/2).P(-2)≥0
Cho đa thúc P(x) = ax3+bx2+cx+d (a,b,c,d thuộc R) Biết 13a-6b+4c = 0 . Chứng minh P(1/2) . P(-2)
Cho đa thức P(x) = ax3+bx2+cx+d (a,b,c,d thuộc R) . Biết 13a-6b+4c=0.Chứng minh P(\(\frac{1}{2}\)) . P(-2) >_ 0
Cho bt p(x)=ax^3+bx^2+cx+d (a,b,c,d thuộc R).Biết 13a-6b+4c=0
CM: p(1/2).p(-2) có giá trị không âm
CHo đa thức P(x)= ax3+bx2+cx+ (a,b,c,d \(\in R\))
Biết 13a-6b+4c=0
CMR: P\(\left(\frac{1}{2}\right)\).P(-2) \(\ge\)0
cho đa thức P(x) = \(ax^3+bx^2+cx+d\) . Biết 13a-6b+4c=0 . CMR : \(P\left(\dfrac{1}{2}\right).P\left(-2\right)\ge0\)
Lời giải:
Ta có:
\(P\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}+\frac{c}{2}+d=\frac{1}{8}(a+2b+4c+8d)\)
\(\Rightarrow 8P\left(\frac{1}{2}\right)=a+2b+4c+8d(1)\)
\(P(-2)=-8a+4b-2c+d\)
\(\Rightarrow 8P(-2)=-64a+32b-16c+8d(2)\)
Từ \((1); (2)\Rightarrow 8P(\frac{1}{2})-8P(-2)=(a+2b+4c+8d)-(-64a+32b-16c+8d)\)
\(=65a-30b+20c\)
\(=5(13a-6b+4c)=0\)
Do đó: \(8P(\frac{1}{2})=8P(-2)\Leftrightarrow P(\frac{1}{2})=P(-2)\)
\(\Rightarrow P(\frac{1}{2})P(-2)=[P(-2)]^2\geq 0\)
Ta có đpcm.
biết a+2b+4c+8d=0 , chứng minh rằng đa thức P(x) = ax^3+bx^2+cx+d có nghiệm là 1/2
cho đa thức f(x)= ax^3 + bx^2 +cx +d
a) Biết a+b+c+d=0, Chứng minh rằng 1 là nghiệm của đa thức
b) Biết rằng a+c=b+d. Chứng minh rằng -1 là nghiệm của đa thức
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5