cho S=30+32+34+...+220
a. tính S b.chứng minh Schia hết cho 7
Cho tổng S = 3+3^2+3^3+3^4+...+3^2015
a) Tính S b) Chứng tỏ Schia hết cho 13
Ta có :
S=3+32+33+34+....+32015
3S=32+33+34+35+....+32016
3S-S=(32+33+34+35+....+32016)-(3+32+33+....+32015)
2S=32016-3
S=(32016-3):2
Cho S=30+32+34+...+32002
a) Tính S
b) Chứng minh S chia hết cho 7
Lời giải:
a.
$S=3^0+3^2+3^4+...+3^{2002}$
$3^2S=3^2+3^4+3^6+...+3^{2004}$
$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$
$8S=3^{2004}-3^0=3^{2004}-1$
$S=\frac{3^{2004}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$
$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$
$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$
$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$
Ta có đpcm.
Cho S = 30 + 32 + 34 + ... + 32002
a. Tính S
b. Chứng minh S chia hết cho 7
b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
cho s= 30+32+34+36=....+32002
tinh s
c minh s chia het ch 7
tham khảo
https://olm.vn/hoi-dap/detail/49371559502.html
Cho S = 30+32+34+36+...+32002
a) Tính S
b) Chứng minh rằng S⋮7
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Cho tổng S=3+32+33+34+35+36+37+38
Chứng minh rằng S chia hết cho 30
Cho S = 7/30+7/31+7/32+7/33+7/34
Chứng tỏ S>1. Giúp mk nha mn
Ta thấy : các số hạng trong tổng S đều \(>\frac{7}{35}\)
\(\Rightarrow S>\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}\)
\(\Rightarrow S>\frac{35}{35}\)
\(\Rightarrow S>1\) ( đpcm )
Cho : S = 3^0+3^2+3^4+3^6+..........+3^2002
a Tính S
b Chứng minh rắng Schia hết cho 7
Đấm vào chữ ĐÚNG giùm em ạ,
Ai bấm là người đẹp zai,xinh gái,quyến rũ....vv
Nói chung là rất đẹp
xin tick giùm em
1/a.chứng minh rằng nếu:(ab+cd+eg)chia hết cho 11 thì abcdeg chia hết cho 11
b.chứng minh rằng:1028+8chia hết cho72
c.tìm số tự nhiên a nhỏ nhất, biết 1960và2002 chia cho a cùng số dư là 28
d.tìm số tự nhiên a nhỏ nhất, biết rằng khi chia sô này cho 29 dư 5 và chia cho 31 dư 28
e.chứng tỏ rằng: 2x+3ychia hết cho 17<=>9x+5y chia hết cho 17
2/cho:S=30+32+34+36+...+32002
a.tính S b.chứng minhSchia hết cho 7
Bài 1 ; a ; ta có : abcdeg = ab . 10000 + cd .100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ab . 909 . 11 + ab + cd . 9 . 11 + cd + eg
= 11 . ( ab . 909 + cd . 9 ) + ( ab + cd + eg )
Vì[11 . ( ab . 909 + cd .9 ) ]chia hết cho 11 ( do 11 chia hết cho 11 )
=> ab + cd + eg chia hết cho 11
để abcdeg chia hết cho 11