Biet ax+by+cz=0 va a+b+c=1/2003
Tinh ax^2+by^2+cz^2 / bc(y-z)^2+ac(x-z)^2+ab(x-y)^2
cho ax+by+cz=0 va a+b+c=2017 tính \(\dfrac{ax^2+by^2+cz^2}{ac\left(x-z\right)^2+bc\left(y-z\right)^2+ab\left(x-y\right)^2}\)
cho ax+by+cz=0 và a+b+c =2019.Tính
A=bc(x-y)^2+ac(x-z)^2+ab(x-y)^2/ax^2+by^2+cz^2
Cho ax + by + cz = 0. CMR:
ax^2 + by^2 + cz^2/ bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2 = 1/a+b+c
Cho ax+by+cz=0; a+b+c=0,01 và ax^2+by^2+cz^2#0
Tính gt phân thức P=ax^2+by^2+cz^2 / ab(x-y)^2+bc(y-z)^2+ca(z-x)^2 ?
Cho ax+by+cz=0 và a+b+c=1/2016. Chưng minh :( ax2+by2+cz2) / [bc(y-z)2+ac(x-z)2+ab(x-y)2 ] =2016
Cho ax + by + cz = 0 và a + b + c = 2016. Tính giá trị của:
A = \(\frac{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}{ax^2+by^2+cz^2}\)
cho x,y,z khác 0 và a,b,c >0 thỏa mãn:
ax+by+cz=0;và a+b+c=2017
tính giá trị biểu thức:
P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Biết ax+by+cz=0. Rút gọn:
A= \(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Từ giả thiết ta có: \(ax+by+cz=0\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)
Ta biến đổi mẫu của biểu thức A:
\(bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(bycz+axcz+axby\right)\)
\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(bcz^2+abx^2+b^2y^2\right)+\left(bcy^2+acx^2+c^2z^2\right)+\left(acz^2+aby^2+a^2x^2\right)\)
\(=b\left(cz^2+ax^2+by^2\right)+c\left(by^2+ax^2+cz^2\right)+a\left(cz^2+by^2+ax^2\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{ax^2+by^2+cz^2}{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}=\frac{1}{a+b+c}\)
\(Cho\) \(ax+by+cz=0;a+b+c=\dfrac{1}{2018}\) . CMR: \(\dfrac{ax^{2\:}+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}=2018\)