Cho A=1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}\)
Chứng minh A<2
$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$122 +132 +142 +...+11002
Chứng minh A<2
$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$122 +132 +142 +...+11002
Chứng minh A<2
$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$122 +132 +142 +...+11002
Chứng minh A<2
$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$122 +132 +142 +...+11002
Chứng minh A<2
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) .Chứng minh A<\(\frac{3}{4}\)
ta có:
\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+..+\frac{1}{100}-\frac{1}{100}\)
só sánh:
1/2 với 3/4 sẽ có:3/4>1/2
1/3 với 3/4 sẽ có: 3/4>1/3
vì các phân số tiếp theo đều nhỏ hơn 1/2 nên
3/4>A
cho A= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\) chứng minh A>50
https://olm.vn/hoi-dap/detail/54671443759.html
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}.\)
Chứng minh A < \(\frac{3}{4}\)
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{3}{4}\left(đpcm\right)\)
Mong mọi người giúp em với ạ!
a) Cho A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{3^{100}}\)Chứng minh A<\(\frac{3}{4}\).
b) Chứng minh rằng:A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}< \frac{1}{2}\)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
a) A = 1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{100^2}\)
Chứng minh rằng A<2
b) B =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+................+\frac{1}{2012^2}\)
Chứng minh rằng \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
Cho \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
Chứng minh rằng \(A< \frac{1}{3}\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)
\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)
\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)
\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)
Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)
Nên : \(A< \frac{1}{3}\)
Cho \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\). Chứng minh \(A< \frac{1}{3}\)
Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)
\(\frac{1}{2^4}< \frac{1}{3}\)
...
\(\frac{1}{2^{100}}< \frac{1}{3}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)
Vậy \(A< \frac{1}{3}\)
Chúc bạn học tốt :>
A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
=> 4A-A=1-\(\frac{1}{2^{100}}\)
=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)
Ta có:\(4A=1+\frac{1}{2^2}+\frac{1}{2^4}+.........+\frac{1}{2^{98}}\)
\(\Rightarrow4A-A=3A=1-\frac{1}{2^{100}}< 1\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
Chứng minh:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{3}{4}\)