b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+......\frac{100}{3^{100}}< \frac{3}{4}\)
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
làm giúp mình bài này và cho mình vài bài giống như bài này đc ko !!!!!!!
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A<0,1 hãy tổng quát bài toán
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A <0,1 hãy tổng quát bài toán
Cho \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}\) chứng minh \(C< \frac{1}{2}\)
có ai làm gấp giúp tớ bài này ko !!!
Cho \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}\) Chứng minh C < \(\frac{1}{2}\)
Cho P=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\). Chứng tỏ rằng \(\frac{1}{15}< P< \frac{1}{10}\)
Câu 1:Tìm x biết:
a, \(\frac{x+2}{327}\)+\(\frac{x+3}{326}\)+\(\frac{x+4}{325}\)+\(\frac{x+5}{324}\)+\(\frac{x+349}{5}\)=0
b,\(\left|5x-3\right|\)\(\ge\)7
Câu 2: Tính tổng S=(-1/7)0+(-1/7)1+(-1/7)2+...+(-1/7)2007
Câu 3: a, Chứng minh:\(\frac{1}{2!}\)+\(\frac{2}{3!}\)+\(\frac{3}{4!}\)+...+\(\frac{99}{100!}\)<1
b, Chứng minh rằng mọi số nguyên dương thì 3n+2-2n+2+3n-2n chia hết cho 10.
Cố lên!