Cho 1≤a,b,c≤6 và a+b+c=12 tìm minP=ab+BC+ac
Cho a,b,c>0 và a+b+c=1. Tìm: \(MinP=\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\)
\(\sqrt{a^2+ab+b^2}=\sqrt{\left(a+b\right)^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}\left(a+b\right)}{2}.\)
Tương tự
=> P \(\ge\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.\)
Vậy \(Pmin=\sqrt{3}\) khi a =b=c = 1/3
cho a, b, c >0 và a+b+c=1 tìm minP= 1/(1-a) + 1/(1-b) + 1/(1-c) + 2(a-a2-ab)/(a+c)2
Tìm các số a,b,c biết ab = -6; bc = 12; ac = -8 và a<0. Vây a,b,c =
Ta có: abbcac=(abc)2=-6.12.-8=576
->abc=24 hoặc -24( vì a<0 nên ta chọn -24)
-> a= -24:12=-2
b=-24:(-8)=3
c=-24:(-6)=4
tìm các số a;b;c biết ab = -6; bc = 12; ac = -8 và a<0 vậy a;b;c?
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)
Bài 1: Tìm các số hữu tỷ a, b, c biết:
a, ab = 3 / 5, bc = 4 / 5, ca = 3 / 4
b, a. ( a + b + c ) = -12; b. ( a + b + c ) = 18; c. ( a + b + c ) = 30
c, ab = c; bc = 4a; ac = 9b
Bài 2: Cho A bằng:
A = ( 1 / 22 - 1 ) . ( 1 / 32 - 1 ) . ( 1 / 42 - 1 ) ... ( 1 / 1002 - 1 )
So sánh A với - 1 / 2
Chú ý: " / " là phân số; " . " là dấu nhân cấp 2
@Uchiha_Shisui
Bài 1:Cho a,b,c là các số thực dương thỏa mãn $a^3+b^3+c^3−3abc=1$ .Tìm minP=$a^2+b^2+c^2$
Bài 2: Cho a,b,c,d thỏa mãn a>b>c>d và ac+bd=(b+d+a−c)(b+d−a+c) . Chứng minh ab+cd là hợp số
Bài 3:
1. Tìm hai số nguyên dương a và b thỏa mãn $a^2+b^2=[a,b]+7(a,b)$(với [a,b]=BCNN(a,b);(a,b)=UCLN(a,b))
2. Cho ΔABC thay đổi có AB=6,AC=2BC.Tìm giá trị lớn nhất của diện tích ΔABC.
Bài 4: Cho a,b,c là các số nguyên tố thỏa mãn: $20abc<30(a+b+c)<21abc$. Tìm a,b,c.
có : ab=-6,bc=12,ac=-8. a>0 . tìm a,b,c
cho a+b+c=6 và ab+bc+ac=12
tính giá tri biểu thức : (a-b)2014+(b-c)2015+(c-a)2016