Chứng minh rằng :
Tổng S = 3^1+3^2+3^3+...+3^100 chia hết cho 120
giúp mik vs, mai mik thi rồi
Cho tổng S = 4 + 3^2 + 3^3 + 3^4 + ... + 3^223.
Chứng minh rằng tổng S chia hết cho 41?
mng giúp mik vs
S=4+32+33+...+3223
S=1+3+32+33+...+3223
S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)
S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)
S=82+3.82+32.82+33.82+...+3119.(1+34)
S=82(3+32+33+...+3119)
vì 82⋮41⇒S⋮41
Vậy S⋮41
Viết phương trình tính tổng các số chia hết cho 3 và 5 trong phạm vi từ 1 đến 100. Có ai giải giúp mik vs mai thi rồi ạ 🥲
tong = 0
for i in range(1, 101):
if i % 3 == 0 and i % 5 == 0:
tong += i
print("Tổng các số chia hết cho 3 và 5 trong phạm vi từ 1 đến 100 là", tong)
Cho A = 4+4^2+4^3+...+4^23+4^24
Chứng minh : A chia hết cho 20, 21 và 420
mọi người giúp mik vs, mai mik thi rồi
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
Cho B=3^1+3^2+3^3+...+3^100
Chứng minh rằng B chia hết cho 2
ai đó giúp mik lẹ với mai nộp roài huhuhu
AI ĐÚNG MÀ NHANH MIK TÍCH NHÁ:>
giúp mik vs mik k choa
Cho biểu thức :
S = 1-3+3^2-3^3+3^4-...-3^2021+3^2022
Tính : 45-3^2023
giúp mik vs, mai mik phải thi rồi
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
Chứng minh tổng sau chia hết cho 31 và 5
C = 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
giúp mik với ạ
mn giải đúng và chính xác nhé
mik đag cần gấp lắm. mai cô kt rồi í ạ.
\(C=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(2+...+2^{96}\right)⋮31\)
\(C=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+...+2^{97}\right)⋮5\)
M=3-3^2+3^3+...+3^23-3^24. C/m M chia hết cho 420
mai thi hk toán rồi mn ơi giúp mik vs
Chứng minh rằng: Tổng S =\(^{3^1+3^2+3^3+...+3^{100}}\)chia hết cho 120
Lời giải:
$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$
$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$
$=40(3+3^5+...+3^{97})$
$=40.3(1+3^4+....+3^{96})$
$=120(1+3^4+...+3^{96})\vdots 120$
1) Chứng minh rằng :
a) 7^104 - 1 chia hết cho 5
b) 3^201 + 2 chia hết cho 5
Giúp mik nhanh nha các bạn
mai mình đi học rồi
a) 7104 - 1 = (74)26 - 1 = ...1 - 1 = ...0 \(⋮\)5
b) 3201 + 2 = (34)50 . 3 + 2 = ...3 + 2 = ...5 \(⋮\)5