Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi mai thu
Xem chi tiết
nguyen van tu
Xem chi tiết
Huy Nguyễn Đức
29 tháng 12 2016 lúc 12:07

a^2-6b^2=-ab 

a^2+ab-6b^2=0 

a^2+3ab-2ab-6b^2=0

a(a+3b)-2b(a+3b)=0

(a+3b)(a-2b)=0 

suy ra a+3b=0 hoặc a-2b=0 

ta có a>b>0 nên a+3b=0 sẽ ko xảy ra 

suy ra a-2b=0 ,a=2b

thế vào đa thức M ta có M=2.2b.b/2.(2b)^2-3b^2 

M=4b^2/5b^2=4/5

Vinh Nguyễn Quang
Xem chi tiết
Lê Ngọc Duyên
Xem chi tiết
Trang Nguyễn
12 tháng 6 2021 lúc 16:28

a/ Ta có: `2a = 3b => a/3 = b/2`

Đặt `a/3 = b/2 = k`   \(\left(k\ne0\right)\)

`=> a = 3k ; b = 2k`

`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)

Vậy `M = 11/38`.

b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015

Vì \(20142015⋮3\) nên \(a^2⋮3\)

\(\Rightarrow a^2⋮3^2\)

\(\Rightarrow a^2⋮9\)

Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)

`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015

\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương   (đpcm)

Mai_Anh_Thư123
Xem chi tiết
Thắng Nguyễn
3 tháng 1 2017 lúc 19:58

Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)

\(\Rightarrow a^2+3ab-2ab-6b^2=0\)

\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)

\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)

Xét \(a=-3b\) thay vào M ta có:

\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)

Xét \(a=2b\) thay vào M ta có:

\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)

Tạ Đức Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 23:46

a^2+9ab-22b^2=0

=>a^2+11ab-2ab-2b^2=0

=>(a+11b)(a-2b)=0

=>a=2b hoặc a=-11b

TH1: a=2b

\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)

TH2: a=-11b

\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)

Nguyễn Thị Bảo Tiên
Xem chi tiết
sdveb slexxx  acc 2 còn...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Đinh Tuấn Việt
Xem chi tiết
Lightning Farron
1 tháng 1 2017 lúc 6:08

Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)

\(\Rightarrow a^2+3ab-2ab-6b^2=0\)

\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)

\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)

\(\Rightarrow\left[\begin{matrix}a+3b=0\\a-2b=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}a=-3b\\a=2b\end{matrix}\right.\)

*)Xét \(a=-3b\) thay vào M ta có:

\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)

*)Xét \(a=2b\) thay vào M ta có:

\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)