Cho B = 3+32+33+34+…+3100 Tìm số dư trong phép chia B cho 13
Cho B = 3+32+33+34+…+3100 Tìm số dư trong phép chia B cho 13
cứu tớ với ạ, tớ cảm ơn
B = 3 + 32 + 33 + 34 + ... + 3100
B = 31 + 32 + 33 + 34+... + 3100
Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.
Vậy B có 100 hạng tử, vì 100 : 3 = 33 dư 1
Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3
B = 398. 13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì: 13. (398 + 395 + ... + 32) ⋮ 13
⇒ B : 13 dư 3
Câu 17: (1 đ)
a) Tìm số nguyên x,y biết:
b) Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Tìm số nguyên x,y biết: Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40
Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được
Bài 1:Cho B= 3 + 32 + 33 +... + 3100. Tìm số dư khi chia B cho 13
\(B=3+3^2+3^3+...+3^{100}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=3+3^2.13+...+3^{98}.13\)
\(=3+13\left(3^2+...+3^{98}\right)\)
\(\Rightarrow B⋮̸13\)
\(\Rightarrow B:13\) dư 3.
Các bạn giải nhanh giúp mình nhé. Mình cần gấp. Thanks!
Cho M = 1+ 3+32 + 33 + 34 + …+ 399+ 3100. Tìm số dư khi chia M cho 13, chia M cho 40
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
1)Tìm số dư của phép chia B cho 4
B=1+3+32+33+...+3100
2)Thu gọn C=5-52+53-54+...+52023-52024
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
Cho M =1+3+32+33+...+399+3100 Tìm số dư khi chia cho 13, và chia M cho 40.
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$