Cho các số thực dương a,b,c,d thỏa mãn: \(a\ge c+d;b\ge c+d\)
\(CMR:ab\ge ad+bc\)
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức
Theo bất đẳng thức Svacxo :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Vậy ta có điều phải chứng minh
Cho các số nguyên dương n,a,b,c,d thỏa mãn n2\(\le\)a<b\(\le\)c<d<(n+1)2. Chứng minh rằng |ad-bc|\(\ge\)1.
Cho các số dương a,b,c,d thỏa mãn \(a\ge b,c\ge d\). CM:
\(ac+bd\ge bc+ad\)
Ta có : \(ac+bd\ge bc+ad\)
\(\Leftrightarrow ac+bd-bc-ad\ge0\)
\(\Leftrightarrow\left(ac-bc\right)-\left(ad-bd\right)\ge0\)
\(\Leftrightarrow c\left(a-b\right)-d\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(c-d\right)\ge0\)( luôn đúng ) ( do a,b,c,d dương và \(a\ge b\), \(c\ge d\))
Vậy ....
Tạp chí THTT:
Cho các số thực dương a,b,c,d thỏa mãn a+b=c+d=2019 và ab\(\ge\)cd.Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{a+2+3\sqrt[3]{b}}{\sqrt[3]{c}+\sqrt[3]{d}}\)
Cho các số thực a , b , c , d thỏa mãn :
\(a\ge b\ge c\ge d;a+b+c+d=9;a^2+b^2+c^2+d^2=21\)
Chứng minh rằng \(ab-cd\ge2\)
Cho số thực dương thỏa mãn a,b,c,d thỏa mãn a/b=b/c=c/d .Hãy rút gọn (a+b+c/b+c+d)^6054
MONG CÁC BN GIÚP
a/b = b/c = c/d = (a+b+c)/(b+c+d)
=> (a+b+c/b+c+d)^6054 = (a/b)^6054
Cho a,b,c,d là các số thực dương thỏa mãn \(\dfrac{a}{b}< \dfrac{c}{d}\)
Hãy so sánh \(\dfrac{a}{b}\) và \(\dfrac{a+c}{b+d}\)
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)
cho a,b,c,d là các số thực dương thỏa mãn a/b<
Cho a; b; c; d là các số thực dương thỏa mãn a/b <c/d
hãy so sánh a/b với a+ c/b+ d