Những câu hỏi liên quan
Trần Thị Cẩm Nhung
Xem chi tiết
Trần Thị Cẩm Nhung
13 tháng 3 2016 lúc 18:44

mk k sửa đc mk viết thiếu đề là A=.....=2(ở trên)

Bình luận (0)
PHAN THỊ QUỲNH THƯ
13 tháng 3 2016 lúc 20:33

bạn ko bít ak

Bình luận (0)
Trần Thị Cẩm Nhung
14 tháng 3 2016 lúc 15:42

nếu bạn biết trả lời giúp mình đi nói thế làm gì

Bình luận (0)
tuan nguyen
Xem chi tiết
nguyh huy
Xem chi tiết
Đặng Viết Thái
30 tháng 5 2019 lúc 19:43

\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)

Bình luận (0)
nguyh huy
30 tháng 5 2019 lúc 19:59

Đặng Viết Thái tử đúng rồi còn mẫu không có căn

Bình luận (0)
nguyh huy
30 tháng 5 2019 lúc 20:12

\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)

Bình luận (0)
long Bui
Xem chi tiết
Huỳnh Diệu Bảo
Xem chi tiết
Thắng Nguyễn
29 tháng 6 2016 lúc 22:03

mk làm rồi mà Câu hỏi của Huỳnh Diệu Bảo - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
Minh Khoa
Xem chi tiết
Nguyễn Linh Chi
1 tháng 3 2020 lúc 18:14

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 3 2020 lúc 19:08

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Võ Bảo Chung
Xem chi tiết
Hoàng Thị Lan Hương
26 tháng 7 2017 lúc 16:28

ĐK \(x;y;z>0\)

Đặt \(x\sqrt{yz}=\left(1\right);y\sqrt{xz}=\left(2\right);z\sqrt{xy}=\left(3\right)\)

Lấy \(\frac{\left(1\right)}{\left(2\right)}\)ta có \(\frac{x\sqrt{yz}}{y\sqrt{xz}}=\frac{x}{y}.\sqrt{\frac{y}{x}}=\frac{8}{2}=4\Rightarrow\frac{x^2}{y^2}.\frac{y}{x}=16\Rightarrow\frac{x}{y}=16\)\(\Rightarrow x=16y\)

Tương tự ta có \(\frac{y\sqrt{xz}}{z\sqrt{xy}}=2\Rightarrow\frac{y}{z}=4\Rightarrow z=\frac{y}{4}\)

Thay x;z vào (2) ta có \(y\sqrt{xz}=y\sqrt{16y.\frac{y}{4}}=2\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\left(l\right)\end{cases}\Rightarrow y=1}\)

\(\Rightarrow x=16;z=\frac{1}{4}\)

Vậy \(x=16;y=1;z=\frac{1}{4}\)

Bình luận (0)
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
15 tháng 2 2017 lúc 8:07

Làm chi mà khó hiểu thế. Làm lại bài của Thắng Nguyễn cho dễ hiểu. 

\(P=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+zx}\)

\(\Leftrightarrow P^2=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)^2.\left(xy+yz+zx\right)\)

Đặt \(\hept{\begin{cases}x=\frac{a}{3}\\y=\frac{b}{2}\\z=c\end{cases}}\)thì ta có

\(P^2=\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(\frac{ab}{6}+\frac{bc}{2}+\frac{ca}{3}\right)\)

\(=\frac{1}{12}\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(2ab+6bc+4ca\right)\)

Ta có: \(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\ge12.\sqrt[12]{\frac{1}{a^3.b^4.c^5}}\)

\(\Rightarrow\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2\ge12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}\)

Ta lại có: \(2ab+6bc+4ca\ge12.\sqrt[12]{\left(ab\right)^2.\left(bc\right)^6.\left(ca\right)^4}=12.\sqrt[12]{a^6.b^8.c^{10}}\)(tách y hệt cái trên)

Từ đây ta có: \(P^2\ge\frac{1}{12}.12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}.12\sqrt[12]{a^6.b^8.c^{10}}=12^2\)

\(\Rightarrow P\ge12\)

Dấu = xảy ra khi a = b = c hay z = 2y = 3x

Bình luận (0)
Thắng Nguyễn
10 tháng 2 2017 lúc 21:33

đề? \(\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+xz}\)

Bình luận (0)
Thắng Nguyễn
10 tháng 2 2017 lúc 22:14

Đặt \(\hept{\begin{cases}a=\frac{x}{3}\\b=\frac{y}{2}\\c=z\end{cases}}\). Do đó, áp dụng BĐT AM-GM ta có:

\(\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2=\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2\left(ab+ac+bc\right)\)

\(=\frac{1}{12}\left(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}\right)^2\left(2xy+4xz+6yz\right)\)

\(\ge\frac{1}{12}\cdot12^3\sqrt[12]{x^{-6}y^{-8}z^{-10}x^2y^2x^4z^4y^6z^6}=144\)

Vì vậy \(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\ge12\) 

Dấu "=" xảy ra khi \(x=y=z=1\) thì P đạt GTNN là 12

Bình luận (0)
Ngô Hoàng Phúc
Xem chi tiết