Cho x,y,z > 0 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{zx}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Cho \(x,y,z\in\left[2018,2019\right]\)
Tìm max của \(f\left(x,y,z\right)=\frac{\left|2018.2019-xy\right|}{\left(x+y\right)z}+\frac{\left|2018.2019-yz\right|}{\left(y+z\right)x}+\frac{\left|2018.2019-zx\right|}{\left(z+x\right)y}\)
cho x,y,z >0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)
Cho \(x,y,z,t>0\) thỏa mãn \(xyzt=1\)
Chứng minh \(\dfrac{1}{x^3\left(yz+zt+ty\right)}+\dfrac{1}{y^3\left(xz+zt+tx\right)}+\dfrac{1}{z^3\left(xy+yt+tx\right)}+\dfrac{1}{t^3\left(xy+yz+zx\right)}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\)
Giair phương trình
\(\begin{cases}x+\frac{yz}{y+z}=\frac{1}{2}\\y+\frac{zx}{z+x}=\frac{1}{3}\\z+\frac{xy}{x+y}=\frac{1}{4}\end{cases}\)
Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\dfrac{1}{16}\)
Cho các số x,y,z>0 tm xy+yz+zx\(\ge x+y+z\)
\(\frac{x^2}{\sqrt{x^2+8}}+\frac{y^2}{\sqrt{y^2+8}}+\frac{z^2}{\sqrt{z^2+8}}\)