cho tam giác ABC , A = 120 độ . cạnh AB = 3cm . tính độ dài đg phân giác AD
Cho tam giác abc có góc a bằng 120 độ, ab bằng 3cm, ac bằng 6cm. Tính độ dài đường phân giác ad
cho tam giác abc có góc a = 120 độ ,ab=3cm,ac=6cm.tính độ dài đường phân giác ad
1. Cho tam giác ABC có góc A= 120 độ, AB=3cm, AC=6cm, AD là phân giác. Tính AD
Qua D kẻ DE // AB ( E \(\in\)AB )
Vì AD là phân giác góc A của \(\Delta ABC\):
\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)
\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)
Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)
Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )
\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều
\(\Rightarrow\)AD = DE
Vì DE // AB ( cách dựng )
Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)
Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)
\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )
cho tam giác abc có góc bac=120, ab=3cm,ac=6cn.tính độ dài đường phân giác ad
Cho tam giác ABC vuông tại A với đường phân giác trong AD (Dnằm trên cạnh BC). Biết AB 3cm AC 4cm. Tính độ dài đoạn thẳng BD.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Xét ΔABC có
AD là đường phân giác trong ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó: \(\dfrac{BD}{3}=\dfrac{5}{7}\)
hay \(BD=\dfrac{15}{7}cm\)
Vậy: \(BD=\dfrac{15}{7}cm\)
Cho tam giác ABC nhọn ,A =120độ ,AB=3cm,AC=6cm,Tính độ dài phân giác AD
Kẻ \(CH\) vuông góc \(BA\) có góc HAC và AC = 6 cm được AH và HC => BH
Có BH và CH tính được góc BCH suy ra tính được góc ACB ( vì goc AHC=30o)
Kẻ \(AK\) vuông góc \(BC\) có góc ACB và AC => AK
Dễ dàng tính được góc ADC => góc ADK
Có ADK và AH tính được AD.
Cho tam giác ABC có góc A = 120 độ , AB = 3 cm , AC= 6 cm . Tính độ dài phân giác AD
Cho tâm giác ABC với đường phân giác AD thỏa mãn : 1/AD = 1/AB +1/AC . tính số đo góc A
cho tam giác abc có ad là đường phân giác biết ab = 4 cm ,ac=5cm,db=3cm độ dài cạnh dc là
Áp dụng t/c đường phân giác, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{4}{5}=\dfrac{3}{CD}\)
\(\Leftrightarrow CD=\dfrac{3.5}{4}=3,75cm\)
Cho tam giác ABC có góc A bằng 120 độ. AB=3cm, AC=6cm.Tính độ dài đường phân giác AC.