CHO HÌNH THANG ABCD (AB//CD) CÓ \(\widehat{A}=\widehat{CBD}\). CM \(BD^2=AB\cdot CD\)
CHO HÌNH THANG ABCD (AB//CD) CÓ \(\widehat{A}=\widehat{CBD}\). CM \(BD^2=AB\cdot CD\)
Xét ΔABD và ΔBDC có
\(\widehat{ABD}=\widehat{BDC}\)
\(\widehat{A}=\widehat{CBD}\)
Do đó: ΔABD\(\sim\)ΔBDC
Suy ra: BD/DC=AB/BD
hay \(BD^2=AB\cdot CD\)
Hình thang ABCD có AB // CD , \(\widehat{A}\) = \(\widehat{CBD}\); AB= a ; CD = b
C/m : BD2 =ab
Cho hình thang cân ABCD (AB // CD) có \(\widehat{A}=\widehat{B}=60^o\); AB= 4,5 cm; AD = BC = 2cm. Tính độ dài đáy CD và diện tích hình thang cân ABCD.
CHO TỨ GIÁC LỒI ABCD KHÔNG CÓ 2 CẠNH NÀO SONG SONG VÀ \(\widehat{BAD}+\widehat{BCD}=\widehat{ABC}+\widehat{ADC}\). HAI ĐG CHÉO CẮT NHAU Ở O, CÁC ĐG THẲNG AB, CD CẮT NHAU Ở Q.
A) CM AB*CD+AD*BC=AC*BD
B) CM \(OA\cdot OC+OQ^2=QC\cdot QD\)
Cho hình thang ABCD(AB//CD), AB<CD. CMR: \(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\)
Kẻ BE // AD ; E ∈ CD ⇒ ABED là hình bình hành
⇒ \(\widehat{D}=\widehat{ABE}\) \(;\) \(\widehat{A}=\widehat{BED}\)
Ta có: \(\widehat{A}=\widehat{BED}>\widehat{C}\) \(;\) \(\widehat{ABC}=\widehat{ABE}=\widehat{D}\)
Suy ra: \(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\) ( đpcm )
Kẻ H // AD,H\(\in\)CD \(\Rightarrow\) ABHD là hình bình hành
\(\Rightarrow\)\(\widehat{ABH}=\widehat{D}\) ; \(\widehat{BHD}=\widehat{A}\)
Ta có:
\(\widehat{BHD}=\widehat{A}>\widehat{C}\) ; \(\widehat{ABC}>\widehat{ABH}=\widehat{D}\)
\(\Rightarrow\)\(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\)
Cho hình thang ABCD (AB//CD) có AB =2,5cm;AD=3,5 cm;BD=5cm và\(\widehat{DAB}=\widehat{DBC}\)
a)CM:\(\Delta ADB\infty\Delta BCD\)
b)tính độ dài CD
\(\infty\):dấu đồng dạng
Cho hình thang ABCD (AB // CD) có: AB=4cm , CD=16cm ,BD=8cm ,\(\widehat{ADB}\)= 40độ.Tính góc C trong hình thang
CHO TỨ GIÁC LỒI ABCD KHÔNG CÓ 2 CẠNH NÀO SONG SONG VÀ \(\widehat{BAD}+\widehat{BCD}=\widehat{ABC}+\widehat{ADC}\). HAI ĐG CHÉO CẮT NHAU Ở O, CÁC ĐG THẲNG AB, CD CẮT NHAU Ở Q.
A) CM AB*CD+AD*BC=AC*BD
B) CM \(OA\cdot OC+OQ^2=QC\cdot QD\)
Hình thang ABCD có \(\widehat{D}=\widehat{A}=90^0\); AB = 30cm; CD = 18cm; BC = 20cm
a. Tính \(\widehat{ABC};\widehat{BCD}\)
b. Tính \(\widehat{DAC};\widehat{ADB}\)
c. Tính BD, AC