Cho E= {2 ; 4 ;6 ;8 }
Tập hợp E có bao nhêu tập hợp con . Viết tất cả hợp con co 2 phân tử của E
cho a,b,c,d,e nguyên dương biết a^2+b^2+c^2+d^2+e^2 chia hết cho 2. cmr a+b+c+d+e là hợp số
Xét a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)
\(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e
\(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)
Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2
tương tự b,c,d,e cũng vậy
\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2
mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2
\(\Rightarrow\)a+b+c+d+e \(⋮\)2
mà a,b,c,d,e nguyên dương
\(\Rightarrow\)a+b+c+d+e>2
\(\Rightarrow\)a+b+c+d+e là hợp số
Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)
còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó
nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
Lời giải:
$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$
$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$
$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$
Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực
Do đó để tổng của chúng bằng $0$ thì:
$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$
$\Leftrightarrow 2b=2c=2d=2e=a$
$\Rightarrow b=c=d=e$
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)
CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)
\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)
Cho các số nguyên dương a,b,c,d,e thỏa mãn: \(a^2+b^2+c^2+d^2+e^2\) chia hết cho 2 . Chứng tỏ rằng a+b+c+d+e là hợp số
HELP ME, PLEASE!
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
cho a+b+c+d+e=8 và a^2+b^2+c^2+d^2+e^2=16 tìm gtln của e
cho cac so nguyen duong a;b;c;d;e thỏa mãn tính chất: a^2+b^2+c^2+d^2+e^2 là một số chia hết cho 2.Chứng tỏ rằng a+b+c+d+e là hợp số
Xét a^2-a = a.(a-1) chia hết cho 2
Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2
=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2
Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2
Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô
Tk mk nha
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2.
Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2
=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.
Do đó a + b + c + d là số chẵn
Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số.
x/2=y/3=z/5 và x^2-2y^2+z^2 =44
ai giúp e vs ak , e cần gấp ạ
e tick đúng cho ạ!!!
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)
cho cac so tu nhien >0 là a;b;c;d;e thoa man tinh chat a^2+b^2+c^2+d^2+e^2 la 1 so chia het cho 2.chứng minh rằng a+b+c+d+e là hợp số
cho 6 số a,b,c,d,e,g và
b^2=a.c
c^=b.d
d^2=c.e
e^2=d.g
cmr: a/e=(a+b+c+d+e)/(b+c+d+e+g
giúp nha,ai trả lời trước mình tích cho 2 bạn đầu tiên
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\) (3)
\(e^2=dg\Rightarrow\frac{d}{e}=\frac{e}{g}\) (4)
Từ (1),(2),(3),(4) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)
Ta có: \(\frac{a}{b}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (5)
\(\frac{b}{c}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (6)
\(\frac{c}{d}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (7)
\(\frac{d}{e}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (8)
\(\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (9)
Nhân (5),(6),(7),(8),(9) vế với vế:
\(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\cdot\frac{d}{e}\cdot\frac{e}{g}=\frac{a}{g}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^5\) (đpcm)
P/s: Mk nghĩ đề là c/m: a/g = (a+b+c+d+e/b+c+d+e+g)^5
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
cho hình tam giác abc trên ablay điểm e sao cho AE =1/2 ab .trên BC lấy điểm M sao cho BM =1/2 BC .nối E với M và nối E với C.tinh S ABC ,S BEM