\(\frac{1+3.y}{12}=\frac{1+5.y}{5.x}=\frac{1+7.y}{4.x}\)
Ai giải được mk cho 5 tick
BÀi tập : Tìm cặp số ( x ; y ) nguyên biết :
a)\(\frac{x}{y}=\frac{6}{8}\)
b) \(\frac{x-1}{-2}=\frac{y}{5}\)
c)\(\frac{y+1}{4}=\frac{X}{-6}\)
d) \(\frac{x+5}{y-7}=\frac{-3}{8}\)
Giải cho mk nhé , trước tết thì mk tick cho , lẹ lên !
Làm sao 2 ẩn mà chỉ có 1 phương trình mà giải đc nhỉ ??
Ta có : \(\frac{6}{8}=\frac{3}{4}\)
\(\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow4x=3y\)
\(\Rightarrow x=3;y=4\)
a, tìm x
\(\frac{1}{2}.x+\frac{3}{5}.\left(x-2\right)=3\)
b, chứng tỏ rằng:\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
giải thưởng:
- ai giải được câu a; mk và 3 ngừ bạn của m sẽ tick cho ( có lời giải đàng hoàng)
- ai giải được câu b , mk và 5 ngừ bạn của mk sẽ tick cho (có lời giải đàng hoàng)
- ai giải được cả hai câu , mk và 7 ngừ bạn của mk sẽ tick cho ( có lời giải đàng hoàng)
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1/2^2 < 1/1*2
1/3^2 < 1/2*3
1/4^2 < 1/3*4
...
1/100^2 < 1/99*100
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
=> A < 1 - 1/100
=> A < 1
minh deo can ban k dau :((
\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)
\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)
\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)
\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)
\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)
Vậy x = 42/11
Tìm x;y biết
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
(giải chi tiết cho 3 tick. Ai giải cho mình trước đây đều được 3 tick)
Số cặp số (x;y) nguyên thỏa mãn \(\frac{x}{5}-\frac{4}{y}=\frac{1}{3}\)
Nhớ ghi đầy đủ cách giải cho mk nha, mk sẽ tick (^_^)
Giải pt:\(\hept{\begin{cases}5|x-3|+\frac{12}{x+y}=\frac{21}{2}\\|3-x|+\frac{1}{x+y}=\frac{7}{4}\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{7}{5}\end{cases}}\)
cậu cứ nhân 5 vào phương trình (2)
cộng 2 phương trình lại cậu sẽ ra được x+y-1=2
thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13
giải hệ rồi tìm được x và y
Tìm x, y, z biết:
a) \(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\)và x+y-z=69
b) 2x=3y, 5y=72 và 3x+5y-7z=30
c)\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
Ai bt câu nào thì giúp mk nha, mk tick, cảm ơn m pạn trước nhé!
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Giải hệ phương trình
\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)
ĐKXĐ: ..
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+y-1}=u\\\frac{1}{2x-y+3}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u-5v=-\frac{5}{2}\\3u+v=-\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=-\frac{1}{2}\\v=\frac{1}{10}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)
đặt \(\frac{1}{x+y-1}=a\\ \frac{1}{2x-y+3}=b\)
ta có :
\(\left\{{}\begin{matrix}4a-5b=\frac{-5}{2}\\3a+b=\frac{-7}{5}\end{matrix}\right.\).......=>\(\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=\frac{1}{10}\end{matrix}\right.\)
suy ra \(\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
#Mai.T.Loan
giải hpt
a) \(\left\{{}\begin{matrix}\frac{5}{x-1}+\frac{1}{y-1}=10\\\frac{1}{x-1}-\frac{3}{y-1}=18\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{2}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{13}{6}\end{matrix}\right.\)
a) Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=a\\\frac{1}{y-1}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}5a+b=10\\a-3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15a+3b=30\\a-3b=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-3b=18\\16a=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=3\\\frac{1}{y-1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{4}{5}\end{matrix}\right.\)
Vậy...
b) Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=a\\\frac{1}{\sqrt{y+6}}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\5a+3b=\frac{13}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\51a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{306}\\b=\frac{-43}{612}\end{matrix}\right.\)( loại vì \(a,b>0\) )
Vậy hệ vô nghiệm
Is that true .-.
Cho xin solve lại câu b)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}21a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a+3b=\frac{13}{6}\\41a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{246}\\b=\frac{8}{123}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{97}{246}\\\frac{1}{\sqrt{y+6}}=\frac{8}{123}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{126379}{9409}\\y=\frac{14745}{64}\end{matrix}\right.\)
Vậy...