Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Kinomoto
Xem chi tiết
To Kill A Mockingbird
Xem chi tiết
I don
14 tháng 3 2018 lúc 21:12

TA CÓ: \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)

\(\Rightarrow\frac{x}{2009}=k\Rightarrow x=2009k\)

\(\frac{y}{2010}=k\Rightarrow y=2010k\)

\(\frac{z}{2011}=k\Rightarrow z=2011k\)

thay vào \(\left(x-z\right)^3=\left(2009k-2011k\right)^3=\left(k.\left(2009-2011\right)\right)^3=\left(k.\left(-2\right)\right)^3=k^3\left(-2\right)^3=k^3.\left(-8\right)\)

\(8\left(x-y\right)^2\left(y-z\right)=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)=8\left(-k\right)^2\left(-k\right)=\left(-8\right)k^3\)

\(\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(=k\left(-8\right)\right)\)  ( đ p c m)

CHÚC BN HỌC TỐT!!!

pham van chuong
Xem chi tiết
Nguyễn Anh Quân
14 tháng 1 2018 lúc 15:15

Có : |x-2009|+|x-2012| = |x-2009|+|2012-x| >= |x-2009+2012-x| = 3

Lại có : |x-2010| và |y-2011| đều >= 0

=> |x-2009|+|x-2010|+|y-2011|+|x-2012| >= 3

Dấu "=" xảy ra <=> (x-2009).(2012-x) >= 0 ; x-2010 = 0 ; y-2011 = 0  <=> x=2010 và y=2011

Vậy x=2010 và y=2011

Tk mk nha

Bui Duc Kien
Xem chi tiết
暁冬|LIE MORIARTY|
18 tháng 12 2022 lúc 14:53

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

Trần khanh hòa
Xem chi tiết
Hoàng Thị Ánh Phương
1 tháng 3 2020 lúc 15:23

\(\left\{{}\begin{matrix}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{matrix}\right.\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(x+z=0\) hoặc \(z+y=0\)

\(\Leftrightarrow x=-y\) hoặc \(x=-z\) hoặc z=-y

\(\Rightarrow P\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa
Nguyễn Thị Hải Yến
Xem chi tiết
TNA Atula
21 tháng 2 2018 lúc 19:54

A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011

≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011

= /y-2010/+/x-2011/+2012≥2012

Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)

Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

Phan Thị Hà Vy
Xem chi tiết
Dương Lam Hàng
13 tháng 2 2019 lúc 14:34

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)

Nguyễn Vũ Thảo My
Xem chi tiết
Thủy Đặng
Xem chi tiết