Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trung Hiếu
Xem chi tiết
nguyễn văn kiệt
28 tháng 12 2017 lúc 21:34

x2 + y2 +6y +5 = 0

<=> x2 +(y2+2y3+32)-4=0

<=> x2 + (y+3)2=4

Vì x2 \(\geq\) 0  

(x+3)2 \(\geq\) 0

Mà 4 = 1.4=4.1 (Còn (-4).(-1) và (-1)(-4) nhưng vì mấy cái kia lớn hơn hoặc bằng 0 nên ko có âm)

Từ đó ta lập bảng

Kim Trân Ni
Xem chi tiết
Tran Le Khanh Linh
1 tháng 3 2020 lúc 13:48

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

Khách vãng lai đã xóa
lê quỳnh như
Xem chi tiết
Thắng Nguyễn
24 tháng 10 2016 lúc 17:14

\(\hept{\begin{cases}x^2-xy-6y^2-2x+11y-3=0\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left(x-3y+1\right)\left(x+2y-3\right)=0\)

Nếu \(x-3y+1=0\Rightarrow x=-1+3y\) thay vào (2) ta được:

\(\left(-1+3y\right)^2+y^2=0\Rightarrow10y^2-6y+1=0\)

\(\Delta=\left(-6\right)^2-4\left(10\cdot1\right)=-4< 0\)(vô nghiệm)

Nếu \(x+2y-3=0\Rightarrow x=3-2y\)thay vào (2) ta được:

\(\left(3-2y\right)^2+y^2=0\)\(\Rightarrow5y^2-12y+9=0\)

\(\Delta=\left(-12\right)^2-4\left(5\cdot9\right)=-36< 0\)(vô nghiệm)

Vậy hpt trên vô nghiệm

ttttt
24 tháng 10 2016 lúc 20:21

gio qua

Nguyễn Thị Phương Minh -...
12 tháng 1 2019 lúc 21:54

hpt có nghiệm x=-1 , y=2 mà ông thắng làm sai rồi sao online maths còn chọn đúng olm làm ăn kiểu gì vậy

Âu Dương Thiên Vy
Xem chi tiết
Thắng Nguyễn
7 tháng 2 2018 lúc 17:54

\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 21:20

a: =>(x-7)(x+3)=0

hay \(x\in\left\{7;-3\right\}\)

b: =>2x+7=0

hay x=-7/2

c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

Anime
Xem chi tiết
Lê Song Phương
15 tháng 4 2023 lúc 19:11

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.

Kiệt Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
7 tháng 7 2020 lúc 19:25

:))

\(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow x=2;y=1\)

Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 7 2020 lúc 21:03

Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)

Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình

KL: S={(2;1)}

Khách vãng lai đã xóa
Lê Đức Hoàng Sơn
Xem chi tiết
alibaba nguyễn
26 tháng 5 2017 lúc 9:55

\(\hept{\begin{cases}x^4+y^2-4x^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y-3\right)\left(x^2-2\right)+4\left(x^2-2\right)+4\left(y-3\right)=8\end{cases}}\)

Đặt \(\hept{\begin{cases}x^2-2=a\\y-3=b\end{cases}}\) thì ta có

\(\hept{\begin{cases}a^2+b^2=4\\ab+4\left(a+b\right)=8\end{cases}}\)

Tới đây thì quá đơn giản rồi nhé.

Trần Ngyễn Yến Vy
Xem chi tiết