cho (a^+b^2) (x^2+y^2)=(ax+by)^2 . CMR a/x=b/y
cho x/a+y/b+z/c cmr (x^2+ y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
Cho ax + by + cz = 0. CMR:
ax^2 + by^2 + cz^2/ bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2 = 1/a+b+c
Cho a+b+c=0, x+y+z=0, a/x+b/y+c/z=0. CMR: \(ax^2+by^2+cz^2=0\)
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
cho các số a, b, x, y # 0. CMR : (ax+by)^2 < (a^2+b^2)(x^2+y^2) -- dấu bằng xảy ra khi nào
áp dụng Bunhiacopxki đi tui vừa làm xong
Câu hỏi của kiss you - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
Dành cho các bạn chuyên toán nè? | Yahoo Hỏi & Đáp
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Cho x= a^2 - bc ;y= b^2- ac z=c^2-ab.
CMR:( x+y+z)×(a+b+c) =ax+by+cz
CMR nếu x/a=y/b=z/c thì (x^2+y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
biến đổi tương đương thì dài dòng quá
ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm
Chúc bn hok tốt