m-n/2m=3m(m-n)²/6m²(m-n)
Cho m > n, chứng minh:
a, m+2>n+2;
b, -2m<-2n;
c, 2m-5>2n-5
d, 4-3m<4-3n
a.m+2>n+2
Ta có: m >n
=>m+2 > n+2 (cộng hai vế với 2)
do đó m+2>n+2
b, -2m < -2n
Ta có: m > n
=> -2m < -2n (nhân hai vế với -2)
do đó -2m<-2n
c,2m-5>2n-5
Ta có: m>n
=>2m>2n (nhân hai vế với 2)
=>2m-5>2n-5 ( cộng hai vế với -5)
do đó 2m-5>2n-5
d,4-3m<4-3n
Ta có :m>n
=> -3m<-3n (nhân hai vế với -3)
=> 4-3m<4-3n (cộng 2 vế với 4)
tìm số tự nhiên m thỏa mãn đồng thời cả 2 ptrình sau:
a, \(4\left(n+1\right)+3n-6< 19\)
b, \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
Với giá trị nào của m thì biểu thức:
a,\(\dfrac{m-2}{4}+\dfrac{3m+1}{3}\)giá trị âm
b, \(\dfrac{m-4}{6m+9}\)có giá trị dương
c,\(\dfrac{2m-3}{2m+3}+\dfrac{2m+3}{2m-3}\) có giá trị âm
d, \(\dfrac{-m+1}{m+8}+\dfrac{m-1}{m+3}\) có giá trị dương
e,\(\dfrac{\left(m+1\right)\left(m-5\right)}{2}\)
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
câu c
\(\Leftrightarrow\dfrac{2m-3}{2m+3}+\dfrac{2m+3}{2m-3}< 0\Leftrightarrow\dfrac{\left(2m-3\right)\left(2m-3\right)}{\left(2m+3\right)\left(2m-3\right)}+\dfrac{\left(2m+3\right)\left(2m+3\right)}{\left(2m-3\right)\left(2m+3\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2m-3\right)^2+\left(2m+3\right)^2}{\left(2m+3\right)\left(2m-3\right)}< 0\)
có
\(\left(2m-3\right)^2+\left(2m+3\right)^2>0\forall m\)
\(\Rightarrow\left(2m+3\right)\left(2m-3\right)< 0\Leftrightarrow\dfrac{-3}{2}< m< \dfrac{3}{2}\)
Cho 3m -2m =1.Biết m,n thuộc N. Chứng tỏ rằng m,n nguyên tố cùng nhau
$3m-2m=1$ thì $m=1$. Còn $n$ ở đâu bạn?
1) Chứng minh rằng với mọi số nguyên m, n ta có
a) (m^3+2m, m^4+3m^2+1)=1
b) ((m^3)n+2m, nm+1)=1
Tìm m,n để mỗi hàm số sau là hàm số bậc nhất:
a) y = (3m-1) (2n+3)x2 - (4n+3)x - 5n2 + mn - 1
b) y = (m2-2mn+n2)x2 - (3n+n)x - 5(m-n) + 3m2 + 1
c) y = (2mn+2m-n-1)x2 + (mn+2m-3n-6)x + mn2 - 2m + 1
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
Cho biểu thức
P = 2 m + 16 m + 6 m + 2 m - 3 + m - 2 m - 1 + 3 m + 3 - 2
Tìm giá trị tự nhiên m để P là số tự nhiên ?
A. m = 9
B. m = 4
C. m ∈ 4 ; 9
D. m = 1
Chọn đáp án C.
Thử lại, với m= 4 thì P =3 ( thỏa mãn)
Với m = 0 thì P = -1 ( không là số tự nhiên).
Với m = 9 thì P = 2 ( thỏa mãn)
Vậy m = 4 hoặc m = 9.
Cho 2 điểm M, N cánh nhau 4m
a) vẽ (M; 3m) và(N; 2m)
b)vẽ 2 đườg tròn cắt tại A, B. Tính AM,BN
c)(M;3m) cắt MN tại C. tính NC
d)(N; 3m) cắt MN tại D tính CD
e) (N; 2,5m) cắt MN tại E chứng tỏ E là trung điểm của đoạn thẳng MC
Cho m > n, chứng minh:
a) m + 2 > n + 2; b) -2m < -2n
c) 2m – 5 > 2n – 5 d) 4 – 3m < 4 – 3m
a)m>n công vế vs 2
=> m+2>n+2
b) nhân cả 2 vế m>n cói -2, vì -2 là âm nên dấu bdt đổi chiều: -2m<-2n
c)m>n
=> 2m>2n
=> 2m-5>2n-5
d) m>n
=> -3m<-3n
=>4-3m<4-3n
a) Ta có: m > n => m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n => -2m < -2n ( nhân hai vế với -2 và đổi chiều BĐT)
c) Ta có: m > n => 2m > 2n => 2m – 5 > 2n – 5
(nhân hai vế với 2, rồi cùng cộng vào hai vế với -5)
d) Ta có m > n => -3m < -3n ⇒ 4 – 3m < 4 – 3n
(nhân hai vế với -3 và đổi chiều BĐT, rồi cùng cộng vào hai vế với 4)
giai va bien luan phuong trinh:
a)(2m-1)x-3m+(m+2)x
b)2(m-1)x-m(x-1)=2m+3
c)(2m-1)x+(3m+2)x=5m+1
d)(m.n+2)x+m=2n+(n+2m)x
tim m,n de pt sau tuong duong x^2-(2m+n)x-3m=0 va x^2-(m+3)x-6=0