Tìm \(x\in Z\)để \(\frac{5-3x}{2x-1}\in Z\)
Tìm x thuộc Z để:
\(\frac{2x+3}{3x+1}\in Z\)
2x+3 chia hết cho 3x+1
=>3(2x+3) chia hết cho 3x+1
=> 6x+9 chia hết cho 3x+1
=>2(3x+1)+7 chia hết cho 3x+1
=>7 chia hết cho 3x+1
=> 3x+1 thuộc Ư(7)=(1;7;-1;-7)
=> x thuộc 0;2
Tìm \(x\in Z\)để:
A = \(\frac{2x}{x-2}\in Z\)
B = \(\frac{x}{3x+1}\in Z\)
C = \(\frac{x^2+2}{x+1}\in Z\)
D = \(\frac{x+1}{x^2+3}\in Z\)
a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)
Để \(A\inℤ\)
\(\Rightarrow\frac{4}{x-2}\inℤ\)
\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)
nếu x -2 = 4 => x = 6 (TM)
x- 2= - 4 => x= - 2 (TM)
x- 2= 2 => x = 4 (TM)
x- 2 = -2 => x = 0 (TM)
x - 2 = 1 => x = 3 (TM)
x - 2 = -1 => x= 1 (TM)
KL: \(x\in\left(6;-2;4;0;3;1\right)\)
c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)
Để \(C\inℤ\)
\(\Rightarrow\frac{3}{x+1}\inℤ\)
\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu x + 1 = 3 => x = 2 (TM)
x + 1 = - 3 => x = -4 (TM)
x + 1 = 1 => x = 0
x + 1 = -1 => x = -2 (TM)
KL: \(x\in\left(2;-4;0;-2\right)\)
p/s
Cho A = \(\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+1\)
a, Rút gọn .
b, Tìm \(x\in Z\)để \(A\in Z\).
c, Tìm x để \(A\ge0\)
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
Cho \(A=\frac{3x+2}{x-3}\)và \(B=\frac{x^2+3x-7}{x+3}\)
a) Tính A khi x = 1 , x = 2 , x = \(\frac{5}{2}\)
b) Tìm x \(\in\)Z để A \(\in\)Z
c) Tìm \(x\in Z\)để B \(\in\)Z
d) Tìm \(x\in Z\)để A và B cùng \(\in Z\)
a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)
Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)
Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)
b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)
\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)
Lập bảng :
x - 3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
c,Để suy nghĩ đã
Làm tiếp :v
c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)
\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Lập bảng :
x + 3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
d, Tương tự
B1: Tìm x\(\in\)Z để :a) \(\frac{2012\sqrt{x}+5}{1006\sqrt{x}+1}\in\)Z ; b) \(\frac{1-3x}{x+5}\in\)Z
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
Tìm \(x\in Z\) để :
\(\frac{3x^3+13x^2-7x+5}{3x-2}\in Z\)
\(\frac{3x^3+13x^2-7x+5}{3x-2}=\frac{x^2\left(3x-2\right)+5x\left(3x-2\right)+\left(3x-2\right)+7}{3x-2}=x^2+5x+1+\frac{7}{3x-2}\)
Để p/s trên nhận giá trị nguyên thì 3x-2 thuộc ước của 7
Bạn tự liệt kê
\(\frac{3x^3+13x^2-7x+5}{3x-2}=\frac{x^2\left(3x-2\right)+15x^2-7x+5}{3x-2}=\frac{x^2\left(3x-2\right)}{3x-2}+\frac{15x^2-7x+5}{3x-2}=x^2+\frac{15x^2-7x+5}{3x-2}\in Z\)
\(\Rightarrow\frac{15x^2-7x+5}{3x-2}=\frac{5x\left(3x-2\right)+3x+5}{3x-2}=\frac{5x\left(3x-2\right)}{3x-2}+\frac{3x+5}{3x-2}=5x+\frac{3x+5}{3x-2}\in Z\)
\(\Rightarrow\frac{3x+5}{3x-2}=\frac{3x-2+7}{3x-2}=\frac{3x-2}{3x-2}+\frac{7}{3x-2}=1+\frac{7}{3x-2}\in Z\)
\(\Rightarrow7⋮3x-2\)
\(\Rightarrow3x-2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\) vì x thuộc Z