Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cha Ron Su
Xem chi tiết
Trần Ái Linh
29 tháng 5 2021 lúc 20:52

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

Nhung
Xem chi tiết
Phạm Tuân
Xem chi tiết
Bích Linh
Xem chi tiết
YangSu
1 tháng 4 2023 lúc 13:09

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)

kênh youtube: chaau high...
Xem chi tiết

Ta có: \(\Delta=\left\lbrack2\left(m-3\right)\right\rbrack^2-4\left(3m^2-8m+5\right)\)

\(=4\left(m^2-6m+9\right)-12m^2+32m-20\)

\(=4m^2-24m+36-12m^2+32m-20=-8m^2+8m+16\)

\(=-8\left(m^2-m-2\right)=-8\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì Δ>=0

=>-8(m-2)(m+1)>=0

=>(m-2)(m+1)<=0

=>-1<=m<=2

Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m-3\right)\\ x_1x_2=\frac{c}{a}=3m^2-8m+5=\left(3m-5\right)\left(m-1\right)\end{cases}\)

\(x_1^2+2x_2^2-3x_1x_2=x_1-x_2\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2\right)-\left(x_1-x_2\right)=0\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2-1\right)=0\)

TH1: \(x_1-x_2=0\)

=>\(x_1=x_2\)

\(x_1+x_2=2\left(m-3\right)\)

nên \(x_1=x_2=\frac{2\left(m-3\right)}{2}=m-3\)

\(x_1x_2=3m^2-8m+5\)

=>\(3m^2-8m+5=\left(m-3\right)^2=m^2-6m+9\)

=>\(2m^2-2m-4=0\)

=>\(m^2-m-2=0\)

=>(m-2)(m+1)=0

=>\(\left[\begin{array}{l}m-2=0\\ m+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=2\left(nhận\right)\\ m=-1\left(nhận\right)\end{array}\right.\)

TH2: \(x_1-2x_2-1=0\)

=>\(x_1-2x_2=1\)

\(x_1+x_2=2\left(m-3\right)=2m-6\)

nên \(x_1-2x_2-x_1-x_2=1-2m+6=-2m+7\)

=>\(-3x_2=-2m+7\)

=>\(x_2=\frac{2m-7}{3}\)

\(x_1+x_2=2m-6\)

=>\(x_1=2m-6-\frac{2m-7}{3}=\frac{3\left(2m-6\right)-2m+7}{3}=\frac{4m-11}{3}\)

\(x_1x_2=3m^2-8m+5\)

=>\(\frac{\left(2m-7\right)\left(4m-11\right)}{9}=3m^2-8m+5\)

=>\(9\left(3m^2-8m+5\right)=\left(2m-7\right)\left(4m-11\right)\)

=>\(27m^2-72m+45=8m^2-50m+77\)

=>\(19m^2-22m-32=0\)

=>(19m+16)(m-2)=0

=>\(\left[\begin{array}{l}19m+16=0\\ m-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-\frac{16}{19}\left(nhận\right)\\ m=2\left(nhận\right)\end{array}\right.\)

quang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:03

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

Lam Phương
Xem chi tiết
Hoàng Văn Anh
Xem chi tiết
Hoàng Ngọc Mai
Xem chi tiết