Tìm n là số nguyên sao cho : \(\frac{n+7}{n+2}\)có giá trị là một số nguyên.
Cho phân số : \(\frac{5n+7}{n-3}\)
a , Tìm n sao cho A có giá trị là \(\frac{5}{3}\)
b, Tìm n nguyên sao cho A nhận giá trị là số tự nhiên
c, Tìm n nguyên sao cho A là phân số
d, Tìm số nguyên n sao cho phân số đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
tìm các số nguyên n sao cho 2 phần n -1 có giá trị là một số nguyên
Để đây là số nguyên thì \(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
Tìm các số nguyên n sao cho phân số \(\frac{7}{2n-1}\) có giá trị là số nguyên .
Vì 7/2n-1 có giá trị là số nguyên
=> 7 chia hết cho 2n-1
=> 2n-1 thuộc ước của 7
Ư(7)={1;-1;7;-7}
Ta có bảng :
2n-1 1 -1 7 -7
2n 2 0 8 -6
n 1 0 4 -3
Vậy với n thuộc {-3;0;1;4} thì thỏa mãn đầu bài
để phân số có giá trị là số nguyên thì 7 chia hết cho 2n-1
suy ra 2n-1=Ư(7)={1;7;-1;-7}
suy ra 2n-1={1;7;-1;-7}
suy ra 2n={2;8;0;-6}
suy ra n={1;4;0;-3}
vậy với n={1;4;0;-3} thì phân số có giá trị là số nguyên
Tìm các số nguyên n sao cho phân số \(\frac{2n+1}{n^2-3}\)có giá trị là số nguyên
Tìm số nguyên n sao cho 2n+3/7 có giá trị là số nguyên
để 2n+3/7 là số nguyên thì :
(2n + 3) ⋮ 7
⇒ (2n + 3 - 7) ⋮ 7
⇒ (2n - 4) ⋮ 7
⇒ [2(n - 2)] ⋮ 7
Mà (2,7) = 1
⇒ (n - 2) ⋮ 7
⇒ n - 2 = 7k (k ∈ Z)
n = 7k + 2 (k ∈ Z)
Vậy với n = 7k + 2 (k ∈ Z) thì
Tìm các số tự nhiên n để phân số A=\(\frac{n+7}{n+2}\)có giá trị là một số nguyên ?
Để A nguyên
=>n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>n+7-n+2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2E{-1;-5;1;5}
=>nE{-3;-7;-1;3}
Thử lại nx là đc
n+7/n+2 là số nguyên khi n+7chia hết cho n+2
ta có: n+7chia hết cho n+2
suy ra (n+2)+5 chia hết cho n+2
suy ra 5 chia hết cho n+2
N+2 thuộc ước của 5
còn sau đó bạn biết làm gì rồi đó
Để A nguyên thì n+7 chia hết cho n+2
<=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 E Ư(5) = {-1;-5;1;5}
Ta có bảng :
n + 2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
Cho \(A=\frac{1}{2-n}\)(n là một số nguyên)
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm các giá trị của n để A có giá trị là một số nguyên.
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
\(2-n\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(3\) |
Vậy n = 1 hoặc n = 3 thì A nguyên
a. Để A là 1 phân số thì \(2-n\neƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow n\ne\left\{1;3\right\}\)
Vậy để A là ps thì \(n\notin\left\{1;3\right\}\)
Tìm các số tự nhiên n để phân số A = \(\frac{n+7}{n-2}\) có giá trị là một số nguyên.
Để A nguyên thì :
\(n+7⋮n-2\)
\(n-2+9⋮n-2\)
mà \(n-2⋮n-2\Rightarrow9⋮n-2\Rightarrow n-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng :
n-2 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 3 | 1 | 5 | -1 | 11 | -7 |
Vậy,.........