Cmr: (n + 3)3 - n3 - n2 + n -1 chia hết cho 8 với mọi n thuộc Z.
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
CMR: (n+3)2-(n-1) chia hết cho 8 với mọi n thuộc Z
\(\left(n+3\right)^2-\left(n-1\right)=n^2.3^2-n+1=n^2.9-n+1\) luôn chia hết cho 8
CMR: n^3 - n chia hết cho 8 với mọi n thuộc Z
CMR A=n3(n2-72)-36n chia hết cho 5040 với mọi số tự nhiên n
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
CMR: n^3 - n chia hết cho 6 với mọi n thuộc Z
n^5 - n chia hết cho 10 với mọi n thuộc Z
n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6
hay n^3-n chia hết cho 6
n^5-n=n(n-1)(n+1)(n^2+1)
=n(n-1)(n+1)(n^2-4+5)
=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)
n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp
=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5
=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10
n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
=>5n(n-1)(n+1) chia hết cho 10
=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10
hay n^5-n chia hết cho 10