Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi thối
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:51

a: Xét ΔPMN có

F,E lần lượt là trung điểm của PM,PN

=>FE là đường trung bình của ΔPMN

=>FE//MN và \(FE=\dfrac{MN}{2}\)
Ta có: FE//MN

D\(\in\)MN

Do đó: FE//MD

Ta có: \(FE=\dfrac{MN}{2}\)

\(MD=DN=\dfrac{MN}{2}\)

Do đó: FE=MD=ND

Xét tứ giác MDEF có

FE//MD

FE=MD

Do đó: MDEF là hình bình hành

Hình bình hành MDEF có \(\widehat{FMD}=90^0\)

nên MDEF là hình chữ nhật

b: ta có: FE//MN

D\(\in\)MN

Do đó: FE//DN

Xét tứ giác NDFE có

FE//ND

FE=ND

Do đó: NDFE là hình bình hành

=>NF cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của NF

=>N,I,F thẳng hàng

Akai Haruma
28 tháng 12 2023 lúc 11:11

Bạn xem lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-tam-giac-mnp-vuong-tai-m-co-d-e-f-lan-luot-la-trung-diem-cua-mn-np-mpa-tu-giac-mdef-la-hinh-gi-vi-saob-goi-i-la-trung-diem-cua-de-chung-minh-3-diem-n-i-f-thang-hangc-chung-minh-if.8722192330796

Chi thối
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 11:00

Lời giải:

a. $D,E,F$ là trung điểm $MN,NP,MP$ nên $EF, DE$ lần lượt là đường trung bình của tam giác $ABC$ ứng với lần lượt 2 cạnh $MN, MP$

$\Rightarrow EF\parallel MN, DE\parallel MP$

Mà $MN\perp MP$ nên $EF\perp MP, DE\perp MN$

$\Rightarrow \widehat{EFM}=\widehat{EDM}=90^0$

Tứ giác $MDEF$ có 3 góc vuông $\widehat{M}=\widehat{D}=\widehat{F}$ nên là hình chữ nhật.

b.

Gọi $I'$ là giao điểm $NF$ và $DE$

Do $DE\parallel MP$ nên $DI'\parallel MF$

Áp dụng định lý Talet:

$\frac{DI'}{MF}=\frac{ND}{NM}=\frac{1}{2}$

$\Rightarrow MF=2DI'$

Mà $MF=DE$ (do $MFED$ là hcn) 

$\Rightarrow DE=2DI'$

$\Rightarrow I'$ là trung điểm của $DE$
$\Rightarrow I\equiv I'$

Mà $I', N, F$ thẳng hàng nên $I, N, F$ thẳng hàng.

c.

Có: $\frac{NI}{NF}=\frac{ND}{NM}=\frac{1}{2}$ nên $I$ là trung điểm $NF$

$DF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow DF=\frac{1}{2}NP\Rightarrow ME=DF=\frac{1}{2}NP$.

Khi đó ta có:

$NF.ME-IF.PE = 2IF.\frac{1}{2}NP-IF.PE$

$=IF.NP-IF.PE = IF(NP-PE) = IF.NE$

Akai Haruma
28 tháng 12 2023 lúc 11:03

Hình vẽ:

Nguyễn Ngọc Phương Linh
Xem chi tiết
anh hoang
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 10 2021 lúc 8:43

a, Vì \(\widehat{KMH}=\widehat{KHD}=\widehat{KMD}=90^0\) nên MHDK là hcn

b, Vì \(PD=DN;DH//PM\left(\perp MN\right)\) nên \(MH=HN\)

Vì \(PD=DN;DK//MN\left(\perp PM\right)\) nên \(PK=KM\)

Tứ giác MDNE có H là trung điểm MN;DE và \(MN\perp DE\) tại H nên là hthoi

Tứ giác MDPF có K là trung điểm PM;DF và \(MP\perp DF\) tại K nên là hthoi

c, Vì MDNE và MDPF là hình thoi nên MF//PD;ME//DN

Mà PD trùng PN nên ME trùng MF hay M;F;E thẳng hàng

Vì MDNE và MDPF là hình thoi nên \(MF=PD;ME=DN\)

Mà \(PD=DN\) nên \(MF=ME\)

Vậy E đx F qua M

Lai Minh Sang
Xem chi tiết

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên 

jhgsdfghjkl
Xem chi tiết
tholauyeu
29 tháng 10 2021 lúc 17:29

undefined

Đ𝐚𝐧𝐧 𝐋ê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 8:01

Hoàng
3 tháng 11 2022 lúc 20:39

cho \(\Delta ABCD\)

Tường Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2021 lúc 19:06

a: Xét ΔMNP có

D là trung điểm của MP

E là trung điểm của MN

Do đó: DE là đường trung bình của ΔMNP

Suy ra: DE//NP

hay PDEN là hình thang vuông

DE=NP/2=11(cm)

✰๖ۣۜRεɗ♜๖ۣۜSтαɾ✰☣
Xem chi tiết
Flower in Tree
16 tháng 12 2021 lúc 21:30

a.Ta có MNPQMNPQ là hình bình hành

→MQ//NP,MQ=NP→MQ//NP,MQ=NP

Mà F,EF,E là trung điểm MQ,NPMQ,NP

→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP

→FQ=NE→FQ=NE

→NFQE→NFQE là hình bình hành 

→NF//QE→QE//NK→NF//QE→QE//NK

→NEQK→NEQK là hình thang

b.Ta có MF//NE,MF=NEMF//NE,MF=NE

→MNEF→MNEF là hình bình hành

Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE

→MNEF→MNEF là hình thoi

→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^

Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^

Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE

→GFHE→GFHE là hình chữ nhật

c.Để GFHEGFHE là hình vuông

→FE→FE là phân giác ˆGFHGFH^

→FE→FE là phân giác ˆNFPNFP^

→EF⊥NP→EF⊥NP

→MN⊥NP→MN⊥NP

→MNPQ→MNPQ là hình chữ nhật

Khách vãng lai đã xóa