Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sasfet
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 7 2016 lúc 22:35

C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)

Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)

\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)

Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)

Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...

Hoàng Lê Bảo Ngọc
25 tháng 7 2016 lúc 9:00

C4 : Bạn cần thêm điều kiện x là số dương nhé : )

Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy : 

\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)

Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)

C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :) 

\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)

Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)

Vậy .......

tranphuongvy
Xem chi tiết
Xem chi tiết
Edogawa Conan
27 tháng 6 2019 lúc 10:35

Ta có:  A = \(\left|2x-2\right|+\left|2x-2013\right|\)

=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)

=> A \(\ge\)2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0

         => \(2\left(x-1\right)\left(2013-2x\right)=0\)

     => \(\left(x-1\right)\left(2013-2x\right)=0\)

   =>  \(1\le x\le\frac{2013}{2}\)

Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)

๖ۣۜNɦσƙ ๖ۣۜTì
27 tháng 6 2019 lúc 10:38

A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0

<=> (2x - 2)(2x - 2013) ≤ 0

<=> 1 ≤ x ≤ 2013/2

Mà x là số nguyên ....

Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2

                                                           Bài giải

Ta có : \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

                  Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\text{ }\Leftrightarrow\text{ }1\le x\le\frac{2013}{2}\)

\(KL\text{ : }....................\)

Thư Anh
Xem chi tiết
Phùng Minh Quân
24 tháng 2 2018 lúc 18:39

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)

Nguyen Hoang Dieu
Xem chi tiết
Nguyễn Thị BÍch Hậu
28 tháng 6 2015 lúc 19:48

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5

Trần Thị Loan
28 tháng 6 2015 lúc 20:09

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

Le Minh Hieu
Xem chi tiết
Nguyễn Linh Chi
9 tháng 12 2019 lúc 14:09

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.

Khách vãng lai đã xóa
Huy Đinh
Xem chi tiết
Akai Haruma
17 tháng 12 2022 lúc 18:00

Lời giải:

$M=\frac{2x^2-3x+3}{x-2}=\frac{(2x^2-4x)+(x-2)+5}{x-2}$

$=\frac{2x(x-2)+(x-2)+5}{x-2}=2x+1+\frac{5}{x-2}$

Với $x$ nguyên, để $M$ nguyên thì $\frac{5}{x-2}$ nguyên

$\Rightarrow x-2$ là ước của $5$ (do $x$ nguyên)

$\Rightarrow x-2\in\left\{5;-5;1;-1\right\}$

$\Rightarrow x\in\left\{7; -3; 3; 1\right\}$

Linh Vũ
Xem chi tiết
NguyenVietDung
Xem chi tiết
Thanh Tùng DZ
28 tháng 5 2017 lúc 6:32

đặt A = \(\frac{n+3}{2n-2}\)

Ta có : A = \(\frac{n+3}{2n-2}\)

để A \(\in\)Z thì n + 3 \(⋮\)2n - 2 \(\Rightarrow\)2 . ( n + 3 ) \(⋮\)2n - 2 \(\Leftrightarrow\)2n + 6 \(⋮\)2n - 2 \(\Rightarrow\)2n - 2 + 8 \(⋮\)2n - 2

Vì 2n - 2 \(⋮\)2n - 2 nên 8 \(⋮\)2n - 2 

\(\Rightarrow\)2n - 2 \(\in\)Ư ( 8 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 }

Lập bảng ta có :

2n-21-12-24-48-8
n3/21/2203-15-3

Mà n \(\in\)N nên n \(\in\){ 0 ; 2 ; 3 ; 5 }

Trà My
28 tháng 5 2017 lúc 9:45

bạn SKT_NTT ơi

n=0 và n=2 không thỏa mãn