tại sao:(n+1)(n-1)(n+3) = (2k+4)(2k+2) (2k với n = 2k,k\(\in\)N)
mọi người cho e hỏi cái này tí ạ
chứng minh 1+2^2k+1+3^2k+1+...+n^2k+1 chia hết (2k+1)^2 với n=2k+1
Bài 1:Cho a,b,c thuộc Q thỏa mãn abc=1
CMR: 1/ab+a+1+b/bc+b+1+1/abc+bc+b=1
Bài 2:a)1/2+1/3+2/3+1/4+2/4+3/4+...+1/n+2/n+...+n-/n(với n thuộc Z n>=2)
b)1/2-1/3-2/3+1/4+2/4+3/4-...-1/2k+1-2/2k+1-...-2k/2k+1(k thuộc N,k>=1)
c)1/2-1/3-2/3+1/4+2/4+3/4-...+1/2k+2/2k+...+2k-1/2k(k thuộc N , k>=1)
Bài 3:a)CMr 1/n-1/n+1=1/n(n+1) (với n thuộc N*)
b)1/n(n+1)-1/(n+1)(n+2)=2/n(n+1)(n+2)
c)-1-1/3-1/6-1/10-1/15-1/21-1/28-1/36-1/45
d)1/1.2.3+1/2.3.4+1/3.4.5+...+1/18.19.20
Bài 4:Cho các số hữu tỉ a1,a2,.....a9 thỏa mãn 0<a1,....<a9
CMR:a1+....+a9/a3+a6+a9<3
Làm giúp mk nhanh nha!!!..Mk đag cần gấp lmk
Đúng mk sẽ tick.Cảm ơn mn nhiều
Thanks...Arigato....
Cho p là số nguyên tố lẻ. Chứng minh rằng với mọi \(k\in N\), ta luôn có:
\(S=1^{2k+1}+2^{2k+1}+...+\left(p-1\right)^{2k+1}\) chia hết cho p
\(CMR:a^{2k+1}+b^{2k+1}⋮a+b\left(k\in N;a,b\in N\cdot\right)\)
a2k+1+b2k+1=(a+b)(a2k-a2k-1b+22k-2.b2-...+a2b2k-2-ab2k-1+b2k) chia hết cho a+b
=>đpcm
Duoi day la cach giai cua mot bai tuong tu nhu vay
Tich cua 2 so tu nhien lien tiep thi chia het cho 2
Giai
Ta xet thay hai truong hop n chia het cho 2, n chia cho 2 du 1
Truong hop 1 n chia het cho 2
n co dang la 2k (k €N)
n.(n+1)=2k.(2k+1) chia duoc co 2
Truong hop 2 n chia cho 2 du 1
n co dang la n= 2k+1 ( k€n)
n.(n+1)=(2k+1).2.[(2k+1)+1]=(2k+1).(2k+2)
n.(n+1)=(2k+1).2(k+1) chia duoc cho 2
Lam giup minh bai tren theo cach giai nay nhe
Chứng minh rằng, với các số tự nhiên k,n tùy ý, số \(1^{2k-1}+2^{2k-1}+....+\left(2n\right)^{2k-1}\) chia hết cho 2n+1
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
a cũng có thể là \(2k+1\Rightarrow b=2k+2\), bạn làm thiếu.
Nói chung, bài toán giống như đi từ trong nhà ra cổng. Thay vì đi thẳng ra ngoài cổng, việc bạn làm giống như đi vài vòng quanh vườn xong mới chịu ra cổng vậy :D
Làm thế này có phải đơn giản, chính xác và dễ hiểu ko:
Do a và b là 2 STN liên tiếp \(\Rightarrow b=a+1\)
Gọi ƯCLN của a và b là d \(\RightarrowƯCLN\left(a;a+1\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\\left(a+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)-a⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow a;b\) nguyên tố cùng nhau
(3x-2)^2k+(y-1/4)^2k = 0 (k thuộc n)
Các bn giúp mk vs . 3 tik
\(\left(3x-2\right)^{2k}+\left(y-\dfrac{1}{4}\right)^{2k}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-\dfrac{1}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...
Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\) (1)
( chứng minh bằng phương pháp quy nạp toán học)
Giải:
Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .
Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:
\(2^k>2k+1\)
Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)
Thật vậy:
\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)
Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )
Vậy (2) đúng với mọi \(k\ge3\)
=> \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)
sai:2k+1>2.2k
2k+1=2.2k
sửa lại thì có thể đúng :v