tinh
1.3+3.5+5.7+.......+99.101
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tinh tổng:
a) 2/1.3+2/3.5+2/5.7+.........2/99.101
b) 5/1.3+5/3.5+5/5.7+....................5/99.101
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
tính tổng :
a.2/1.3+2/3.5+2/5.7+....+2/99.101
b.5/1.3+5/3.5+5/5.7+....+5/99.101
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
A=1.3+3.5+5.7+......+99.101
\(A=1\times3+3\times5+5\times7+...+99\times101\)
\(=1\left(1+2\right)+3\left(3+2\right)+5\left(5+2\right)+...+99\left(99+2\right)\)
\(=\left(1^2+3^2+5^2+...+99^2\right)+2\left(1+3+5+...+99\right)\)
Ta có:
\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
⇒ \(A=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+...+50^2\right)+2\left(1+3+5+...+99\right)\)
\(=\dfrac{100.101.201}{6}+\dfrac{4.50.51.101}{6}+\dfrac{\left(99+1\right).\left[\left(99-1\right):2+1\right]}{2}\)
\(=338350-171700+5000\)
\(=166650+5000=171650\)
1.3+3.5+5.7+...+99.101
1.3+3.5+5.7+...+99.101
Đặt A = 1.3+3.5+5.7+ ...+ 99.101
ta có : 6A = 1.3.6+3.5.6+5.7.6 +...+99.101.6
= 1.3.(5+1) + 3.5.( 7-1) +5.7.(9-3) +...+99.101.(103-97)
=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+99.101.103-97.99.101
=1.3+99.101.103
A =1029900 :6 = 171650
Answer:
Ta đặt \(A=1.3+3.5+5.7+...+99.101\)
\(\Rightarrow6A=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)\)
\(\Rightarrow6A=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+99.101.103-97.99.101\)
\(\Rightarrow6A=3+99.101.103\)
\(\Rightarrow6A=1029900\)
\(\Rightarrow A=1029900:6=171650\)
1.3+3.5+5.7+...+99.101
Tết Vui mà . Được wá trời money lun
2/3.5+2/5.7+...+2/99.101
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(\dfrac{2}{3.5}=\dfrac{1}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{5.7}=\dfrac{1}{5}-\dfrac{1}{7}\)
\(\dfrac{2}{99.101}=\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Rightarrow=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{98}{303}\)
\(\dfrac{2}{3.5} + \dfrac{2}{5.7} + ..... + \dfrac{2}{99.101}\)
\(= \dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + ........ + \dfrac{1}{99} - \dfrac{1}{101}\)
\(= \dfrac{1}{3} - ( \dfrac{1}{5} - \dfrac{1}{5} ) + ........ + ( \dfrac{1}{99} -\dfrac{1}{99} ) - \dfrac{1}{101} \)
\(= \dfrac{1}{3} - \dfrac{1}{101}\)
\(= \dfrac{101}{303} - \dfrac{3}{303}\)
\(= \dfrac{98}{303}\)
F=1.3+3.5+5.7+....+99.101 = ?
F=1.3+3.5+5.7+...+99.101 = ?