(1đ)
Cho ∆ABC nhọn, lấy M,N,K lần lượt là trung điểm của AB,AC,BC. MN cắt AK tại I. Cho BC = 6cm tính độ dài MN và chứng minh AI=IK.
Cho hình vẽ bên, biết rằng AC = 6cm; góc ANM = góc NCB = 30 độ; M là trung điểm AB và MN//BC a) Tính độ dài NC b) Trên BC lấy điểm K bất kì, AK cắt MN tại I. Chứng minh rằng I là trung điểm AK.
a) Xét tam giác ABC có
M là trung điểm của AB(gt)
MN//BC(gt)
=> N là trung điểm của AC
\(\Rightarrow NC=\dfrac{1}{2}AC=\dfrac{1}{2}.6=3\left(cm\right)\)
b) Ta có MN//BC(gt)
Mà \(I\in MN,K\in BC\)
\(\Rightarrow IN//KC\)
Xét tam giác AKC có:
IN//KC(cmt)
N là trung điểm của AC( cmt)
=> I là trung điểm của AK(đpcm)
cho tam giác ABC cân tại A . BC=6cm. Gọi M,N,K lần lượt là trung điểm của AB,AC,BC
a)Tính độ dài MN và chứng minh BMCN là hình thang cân.
b)Gọi D là điểm đối xứng của K qua N. Chứng minh: AKCD là hình chữ nhật.
c)Chứng minh AK,MN,BD đồng quy
Cho tam giác ABC vuông tại A có AB = 6cm ; AC = 8cm . Trên cạnh AB lấy
điểm M sao cho AM = 4,5cm . Qua M kẻ MN song song với BC ( N thuộc AC )
a) Tính độ dài cạnh AN , BC , MN
b) Từ M kẻ MI // AC (I thuộc BC ) ; IK // AB ( K thuộc cạnh AC ).
Chứng minh :AM/AB+AK/AC=1
c)gọi O là giao điểm của IK và MN.Chứng minh KN.OM=ON.NC
:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có MN//BC (gt)
\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)
\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)
b)Vì MI//AC (gt)
\(\Rightarrow MI//AK\left(K\in AB\right)\)
Vì IK//AB(gt)
\(\Rightarrow IK//AM\left(M\in AB\right)\)
Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)
Ta có: AM+MB=AB
\(\Rightarrow MB=1,5\left(cm\right)\)
Xét tam giác ABC có MI//AB(gt)
Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))
a) Tính giá trị của B biết x=-2
b) Rút gọn A
c) Cho P=A:B Tìm x biết P=3
Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)
a) Rút gọn A
b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)
c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Cho tam giác ABC ,trên cạnh AB và AC lần lượt lấy hai điểm M và N. Biết AM=3cm, BM=2cm, AN=7,5cm , NC=5cm. a) chứng minh rằng MN//BC b) đường trung tuyến AI ( I thuộc BC) của tam giác ABC cắt MN tại K. Chứng minh K là trung điểm của MN
Cho hình thang ABCD (AB // CD). Gọi E, F lần lượt là trung điểm của AD, BC. Đường thăng EF cắt BC, AC lần lượt tại I, K.
a) Chứng minh AK = KC, BI = ID.
b) Chứng minh EI =KF.
c) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
d) Chứng minh K, E, F thẳng hàng.❤❤><
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Xét ΔADC có
E là trung điểm của AD
EK//DC
Do đó: K là trung điểm của AC
hay KA=KC
Xét ΔBDC có
F là trung điểm của BC
FI//DC
Do đó: I là trung điểm của BD
hay IB=ID
Cho tam giác ABC vuông tại A có AB = 6cm ; AC = 8cm . Trên cạnh AB lấy
điểm M sao cho AM = 4,5cm . Qua M kẻ MN song song với BC ( N thuộc AC )
a) Tính độ dài cạnh AN , BC , MN
b) Từ M kẻ MI // AC (I thuộc BC ) ; IK // AB ( K thuộc cạnh AC ).
Chứng minh :
\(\frac{AM}{AB}+\frac{AK}{AC}=1\)
c) Gọi O là giao điểm của IK và MN. Chứng minh KN . OM = ON . NC
tui cx cần câu này nhưng ko có ai tl kìa
cho tam giác abc =8cm ac=12cm lấy điểm m trên cạnh ab sao cho bm=2cm lấy điểm n trên cạnh ac sao cho bn,ac,cn =3cm a, chứng minh rằng mn//bc b,gọi k là trung điểm của bc, tia ak cắt mn tại i, chứng minh rằng ni/kc=ai/ak c, chứng minh rằng i là trung điểm của mn
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
mn giúp với ạ:
Cho tam giác ABC vuông tại A, có AB= 6cm, AC=8cm. Gọi I,M,K lần lượt là trung điểm của AB, BC, AC
a, chứng minh tứ giác AIMK là hình chữ nhật và tính diện tích của nó
b, tính độ dài AM=?
c, Gọi P,J,H,S lần lượt là trung điểm của AI, IM, MK, AK. Chứng minh PH vuông góc với JS
Cho ∆ABC có BC=8cm, các đường trung tuyến BD, CE. Gọi M, N lần lượt là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE lần lượt là I, K.
a) Tính độ dài MN
b) Chứng min MI=IK=KN.
Cho ∆ABC cân tại A, M là trung điểm của BC. Trên tia đối của AB lấy điểm E, trên tia đối của AC lấy điểm D, sao cho AE=AD. Chứng minh D và E đổi xứng với nhau qua đường thẳng AM
Cho tam giác ABC nhọn(AB < AC) có M,N lần lượt là trung điểm của AB,AC. Đường cao AH của tam giác ABC cắt MN tại S .
A/ Chứng minh : MN là đường trung trực của AHb/ Kẻ NK⊥BC tại K.
B/ Kẻ NK⊥BC tại K Chứng minh : KS // ACc/*KẻMI ⊥BC tại I .
C/ Kẻ MI ⊥BC tại I .Chứng minh chu vi tam giác ISK bằng nửa chu vi tam giác ABC