Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Ngọc
Xem chi tiết
Minh Hiền
7 tháng 12 2015 lúc 10:31

3x2+5y2=345

=> 3x2+5y2=300+45

=> 3x2+5y2=3.100+5.9

=> 3x2+5y2=3.102+5.32

=> x=10; y=3.

Uchiha Nguyễn
7 tháng 12 2015 lúc 10:44

x =-10 ; y = -3

Hoặc x = 10 ; y = 3 

Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:31

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:24

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

Huỳnh Thị Thanh Thảo
Xem chi tiết
Hoàng Long
Xem chi tiết
Nguyễn Hoàng Anh Phong
11 tháng 12 2018 lúc 17:53

b) 5x2 +5y2 +8xy + 2x-2y+2 = 0

(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0

(x+1)2 + (y-1)2 +(2x+2y)2 = 0

=> (x+1)2 = 0 => x = -1

(y-1)2 = 0 => y = 1

(2x+2y)2 = 0

KL: x = -1; y = 1

a) 3x2 +5y= 345 

=> x2 chia hết cho 5

=> x chia hết cho 5

đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3

đặt y = 3z => 15t2+9z2 =69

⇒5t2 +3z2 =23

...

hong mai
Xem chi tiết
Nguyễn Nhã Linh
Xem chi tiết
minh nguyen
14 tháng 8 2021 lúc 18:32

=)))))))))))))))))))))))))))))))))))))))))))))))))))))))

Khách vãng lai đã xóa
Khánhh Linhh
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
8 tháng 6 2021 lúc 15:00

Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)

                 \(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

 Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)

  Vậy ...

 

Dương Thanh Ngân
Xem chi tiết
Akai Haruma
25 tháng 1 2021 lúc 10:48

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$