Cho tam giác OAB cân tại O. Lấy C trên oA. Trên tia đối của tia BO lấy BD= AC. CD cắt AB ở M. Trên tia đối của tia AB lấy AP= MB
C/m 1: tam giác APC= tam giác BMD
2: CMP là tam giác gì
3: M là trung điểm của CD
Cho tam giác OAB cân tại O. Lấy C trên oA. Trên tia đối của tia BO lấy BD= AC. CD cắt AB ở M. Trên tia đối của tia AB lấy AP= MB
C/m 1: tam giác APC= tam giác BMD
2: CMP là tam giác gì
3: M là trung điểm
của CD
a) +) Ta có\(\hept{\begin{cases}\widehat{OBM}+\widehat{MBD}=180^{0\left(kề\right)bù}\\\widehat{CAP}+\widehat{CAM}=180^0\left(kề\right)bù\end{cases}}\)
mà\(\widehat{MBO}=\widehat{CAM}\)(do tam giác OAB cân tại O)
=>\(\widehat{MBD}=\widehat{CAP}\)
+) xét tam giác CAP zà tam giác MBD có
PA=MB(gt)
AC=BD(gt)
\(\widehat{MBD}=\widehat{CAP}\left(cmt\right)\)
=> tam giác APC = tam giác BMD
b) tam giác APC = tam giác BMD
=>\(\widehat{CPA}=\widehat{BMD}\)(2 góc tương ứng
mà \(\widehat{BMD}=\widehat{CMA}\)(đối đính)
=>\(\widehat{CPA}=\widehat{CMA}\)
=> tam giác PCM cân
c) ta có ; tam giác CPA = tam giác BMD
tam giác PCM cân
=>\(\hept{\begin{cases}PC=MD\left(2canhtuongung\right)\\PC=CM\end{cases}}\)
=>\(MD=CM\)
=> M là trung điểm của CD
Hình bạn tự vẽ
a) Ta có :góc PAC =180 độ - góc OAB
Ta lại có :góc DBM = 180 độ - góc OBA
Mà góc OAB = góc OBA ( tính chất tam giác cân )
=> góc PAC = góc DBM
Kết hợp với AC =BD , AP = MB
=> tam giác APC=tam giác BMD (c-g-c)
b) Vì tam giác APC=tam giác BMD
=> góc APC = góc BMD
Mà góc BMD= góc CMP ( đối đỉnh )
=> góc CPM = góc CMP nên tam giác CMP cân ở C
c) Vì tam giác APC=tam giác BMD => CP =MD
Vì tam giác CMP cân ở C => CM =CP
=> MD = MC mà M thuộc CD nên M là trung điểm CD
Cho tam giác OAB cân tại O. lấy điểm C thuộc OA. Trên tia đối của tia BO lấy điểm D sao cho BD=AC. CD cắt AB tại M. TRên tia đối của tia AB lấy điểm P sao cho AP=MB
a,CM tam giác APC=BMD
b, tam giác CMP là tam giác gì vì sao
c, CM m là trung điểm của CD
Cho tam giác OAB cân tại O. Lấy điểm C thuộc OA. Trên tia đối của tia BO lấy điểm D sao cho BD=AC. CD cắt AB ở M. Trên tia đối của tia AB lấy điểm P sao cho AP=MB
a) chứng minh tam giác APC = tam giác BMD
b) CMP là tam giác gì? vì sao?
c) chứng minh M là trung điểm của DC
Bài làm
a) Ta có: \(\widehat{OAB}+\widehat{OAP}=180^0\)( hai góc kề bù )
\(\widehat{OBA}+\widehat{MBD}=180^0\)( hai góc kề bù )
Mà \(\widehat{OAB}=\widehat{OBA}\)( Do tam giác OAB cân ở O )
=> \(\widehat{OAP}=\widehat{MBD}\)
Xét tam giác APC và tam giác BMD có:
AC = BD ( gt )
\(\widehat{OAP}=\widehat{MBD}\)( cmt )
PA = MB ( gt )
=> Tam giác APC = tam giác BMD ( c.g.c )
b) Vì tam giác APC = tam giác BMD ( cmt )
=> \(\widehat{DMB}=\widehat{CPA}\)
Mà \(\widehat{BMD}=\widehat{CMA}\)( Hai góc đối )
=> \(\widehat{CMA}=\widehat{CPA}\)
=> Tam giác CMP cân ở C
c) Vì tam giác CMP cân ở C
=> CP = CM ( hai cạnh bên )
Mà CP = MD ( do tam giác APC = tam giác BMD )
=> CM = MD
=> M là trung điểm CD ( đpcm )
Cho tam giác OAB. Lấy điểm C thuộc OA. Trên tia đối tia BO lấy điểm D sao cho BD = AC. CD cắt AB ở M. Trên tia đối của tia AB lấy điểm P sao cho AP = MB.
a) Chứng minh: tam giác APC = tam giác BMD.
b) tam giác CMP là tam giác gì ? Vì sao?
c) Chứng minh điểm M là trung điểm của CD
cho tam giác OAB cân tại O.lấy điểm C thuộc OA.trên tia đối của BO lấy điểm D sao cho BD=Ac.CD cắt AB ở M.trên tia đối của AB lấy điểm P sao cho AP=MB.
a/ chứng minh:tâm giác APC=tam giác BMD.
b/tam giác CMP là tam giác gì?ví sao?
c/chứng minh M là trung điểm của CD.
Cho tam giác OAB cân tại O. Lấy điểm C thuộc OA. Trên tia đối của tia BO lấy điểm D sao cho BD=AC.CD cắt AB ở M. Trên tia đối của tia AB lấy điểm P sao cho AP=MB.
a, CM:tam giác APC=tam giác BMD
b, Tam giác CMP là tam giác gì?
c, CM điểm M là trung điểm của CD.
a) Ta có:
\(\widehat{OAB}=\widehat{OBA}\Rightarrow180^0-\widehat{OAB}=180^0-\widehat{OBA}\Rightarrow\widehat{CAP}=\widehat{MBD}\)Xét △CAP và △DBM có:
CA=DB(gt)
\(\widehat{CAP}=\widehat{DBM}\)(cmt)
AP=BM(gt)
⇒△CAP = △DBM (cgc)
b) Từ △CAP = △DBM (câu a)
\(\Rightarrow\widehat{CPA}=\widehat{DMB}\)(2 góc tương ứng) mà \(\widehat{DMB}=\widehat{CMP}\)(đối đỉnh)
\(\Rightarrow\widehat{CPA}=\widehat{CMP}\) hay \(\widehat{CPM}=\widehat{CMP}\)
⇒△CMP cân tại C
c) Từ △CAP = △DBM (câu a)⇒CP=DM mà CP=CM (△CMP cân tại C)
⇒DM=CM mà M nằm giữa C và D nên M là trung điểm của CD (đpcm)
Cho tam giác OAB. Lấy điểm C thuộc OA. Trên tia đối tia BO lấy điểm D sao cho BD = AC. CD cắt AB ở M. Trên tia đối của tia AB lấy điểm P sao cho AP = MB.
a) Chứng minh: tam giác APC = tam giác BMD.
b) tam giác CMP là tam giác gì ? Vì sao?
c) Chứng minh điểm M là trung điểm của CD
Cho tam giác AOB cân tại O. Lấy C thuộc cạnh OA và D thuộc tia đối của tia BO sao cho BD = AC. M là giao điểm của CD và AB. Trên tia đối của tia AB lấy K sao cho AK = MB.
a. Chứng minh tam giác AKC = tam giác BMD
b. Chứng minh tam giác CMK cân. Chứng minh M là trung điểm của CD
Cho tam giác AOB cân tại O. Lấy điểm C thuộc cạnh OA và điểm D thuộc tia đối của tia Bo sao cho BD = AC . CD cắt Ab tại M . Trên tia đối của tia AB lấy điểm P sao cho AP = MB.CMR:
a) tam giác APC = tam giác BMD
b)tam giác CMP cân tại C
C) M là trung điểm của CD