cho x,y,z>0 thỏa mãn (x+y)(y+z)(z+x)=8xyz
chứng minh x=y=z
cho x, y, z thỏa mãn x^3+y^3+3xyz<0 và z>0. chứng minh x+y<z
lllllllllllllllllllllllllllllllllllllllllllllllllllllll
cho x ; y ;z thuộc Z thỏa mãn x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
cho x ; y ;z thuộc Z thỏa mãn
x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0
x.y-x.z+y.z-z^2+1=0
x.y-x.z+y.z-z^2 =-1
x(y-z)+z(y-z) =-1
(x+z)(y-z) =-1
=> x và y đối nhau
=> x+y=0
cho x ; y ;z thuộc Z thỏa mãn
x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0
Cho x;y;z >0 thỏa mãn x+ y + z ≤ 1. Chứng minh rằng :
\(17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\dfrac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)+\dfrac{18}{x+y+z}\)
\(=17\left(x+y+z\right)+\dfrac{17}{x+y+z}+\dfrac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\dfrac{17}{x+y+z}}+\dfrac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(17x+\dfrac{17}{9x}\ge\dfrac{34}{3}\)
tương tự.....
suy ra
\(17\left(x+y+z\right)+\dfrac{17}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{34}{3}.3=34\)
lại có
\(\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{x+y+z}.\dfrac{1}{9}=1\)
nên
\(17\left(x+y+z\right)+\dfrac{17}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
cho x,y,z khác 0 thỏa mãn 3x+y+z/x = x+3y+z/y = x+y+3z/z. Tính M= (x+y).(y+z).(z+y)/x.y.z
kkgkirtgkjssykjhskfsrlhklruwo8tiyfieusykdkwirkuiufysoiiyi
Tích trên có số thừa số:
(2012 - 2) : 10 + 1 = 202 (thừa số)
Cứ 4 thừa số thì đem lại cho ta tích có tận cùng là 6.
Mà 202 : 4 = 50 (dư 2)
Khi đó:
(2 x 12 x 22 x 32) x ... x (1962 x 1972 x 1982 x 1992) x 2002 x 2012
Vậy tận cùng của tích là: 6x2x2 có tận cùng là 4.
Câu 2:
Gọi ba số phải tìm là x,y,z
Ta có: x + y + z = 321,95 và 3x = 4y = 5z
Từ 3x = 4y = 5z
Cho ta:
x(13)=y(14)=z(15)=(x+y+z)(13+14...)x(13)=y(14)=z(15)=(x+y+z)(13+14...)(dãy tỉ số bằng nhau)
Do đó: x(13)=411→x=137x(13)=411→x=137
y = 102,75
z = 82,2
Vậy, .....
bay tào lao nhề phải là !@#$%^^*&&^^%^$##@!@#$$%
thế mới ngon lành độc lạ ko đụng hàng
Cho các số thực x, y,z thỏa mãn 0 ≤ x,y,z ≤ 1 . Chứng minh rằng
x + y + z - 2( xy + yz + zx ) + 4xyz ≤ 1
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.