cho f(x)=ax2+bx+c biết 7a+b=0 chứng minh rằng f(10).f(-3)lớn hơn hoặc băng 0
cho hàm số f(x)=ax^2+bx+c
chứng tỏ rằng f(-2);f(3) nhỏ hơn hoặc băng 0 biết 13a+b+2c=0
Cho đa thức f(x) = ax2+bx+c . Biết 7a + b=0. Chứng tỏ rằng f(10). f(-3) ≥ 0
Vì 7a + b =0 nên b= -7a
Do đó : f(x) = ax2 + bx +c
= ax2 - 7ax +c
f(10) = 100a - 70a +c
=30a + c
f(-3) = 9a + 21a + c
= 30a +c
Vậy f(10).f(-3)= (30a + c ) 2 \(\ge\) 0
Cho đa thức f(x)=ax²+bx+c
A, biết f(0)=0, f(1)=2013 và f(-1)=2012. Tính a b c
B, Chứng minh rằng nếu f(1)=2012; f(-2)=f(-3)=2036 thì đa thức f(x) vô nghiệm
Bài 6: Cho f(x) = ax2 + bx + c. Biết 7a + b = 0, hỏi f(10). f(-3) có thể là số âm
không?
7a+b=0 => b=-7a
=> f(x)=ax2+bx+c=ax2-7ax+c
=> f(10) = 102a - 7a.10 + c = 100a-70a+c= 30a+c
f(-3) = (-3)2a - 7.a .(-3) + c = 9a+21a+c=30a+c
=> f(10).f(-3) = (30a+c)2 là số chính phương nên không thể là số âm
cho f(x)=ax2+bx+c biết 7a+b=0 hỏi f(10).f(3) có thể là số âm không
Cho đa thức : Q(x) = ax^2 + bx + c
a) Biết 5a + b+ 2c = 0. Chứng tỏ rằng Q(2).Q(-1) bé hơn hoặc = 0
b) Biết Q(x) = 0 với mọi x . Chứng tỏ rằng a = b = c= 0
a/
\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)
\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)
b/
Q(x) = 0 với mọi x, suy ra các điều sau:
\(\Rightarrow Q\left(0\right)=c=0\); \(Q\left(1\right)=a+b+c=a+b=0\); \(Q\left(-1\right)=a-b+c=a-b=0\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)
Vậy \(a=b=c=0\)
a) Cho đa thức f(x)= ax2+bx+c với a,b,c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có trị nguyên. Chứng minh rằng 2a,2b,2c có giá trị nguyên.
c) Tìm x,y thuộc N biết : 36-y2=8.(x-2010)2
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
\(36-y^2\le36\)
\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)
\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)
Giai tiep nhe
Cho f(x)= ax2 + bx + c biết 7a + b = 0. So sánh f(10) . f(-3) với 0
Cho a,b,cần là các số thực dương và a+b+c lớn hơn hoặc bằng 3. Chứng minh rằng
1/(1+a)+1/(1+biết)+1/(1+c)lớn hơn hoặc bằng 3/2
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)
Cái đó chỉ đúng khi 1/1+a=1/1+b=1/1+c thoi