Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duyên
Xem chi tiết
Nhok baka
Xem chi tiết
Thùy Linh
16 tháng 5 2018 lúc 13:24

Vì 7a + b =0 nên b= -7a

Do đó : f(x) = ax2 + bx +c

= ax2 - 7ax +c

f(10) = 100a - 70a +c

=30a + c

f(-3) = 9a + 21a + c

= 30a +c

Vậy f(10).f(-3)= (30a + c ) 2 \(\ge\) 0

Shinnôsuke
Xem chi tiết
Corona
Xem chi tiết
Lương Khánh Nhật Minh
16 tháng 4 2022 lúc 23:56

7a+b=0 => b=-7a

=> f(x)=ax2+bx+c=ax2-7ax+c

=> f(10) = 102a - 7a.10 + c = 100a-70a+c= 30a+c

f(-3) = (-3)2a - 7.a .(-3) + c = 9a+21a+c=30a+c

=> f(10).f(-3) = (30a+c)2 là số chính phương nên không thể là số âm

Đinh Thị Thùy
Xem chi tiết
ngUYỄN pHƯƠNG lINH
3 tháng 4 2016 lúc 8:26

của t là số dg

hoàng quốc bảo
10 tháng 5 2017 lúc 21:09

không thể là số âm

Ngọc Tuấn
10 tháng 5 2017 lúc 21:34

hjhjuhsusghee

Thương
Xem chi tiết
Mr Lazy
12 tháng 7 2015 lúc 8:13

a/

\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)

\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)

b/

Q(x) = 0 với mọi x, suy ra các điều sau:

\(\Rightarrow Q\left(0\right)=c=0\)\(Q\left(1\right)=a+b+c=a+b=0\)\(Q\left(-1\right)=a-b+c=a-b=0\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)

Vậy \(a=b=c=0\)

Lê Tài Bảo Châu
Xem chi tiết
Girl
8 tháng 3 2019 lúc 4:00

\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)

\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên

\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)

\(\Rightarrow2b\) nguyên

\(\Rightarrowđpcm\)

Girl
8 tháng 3 2019 lúc 4:02

\(36-y^2\le36\)

\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)

\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)

Giai tiep nhe

Emely Nguyen
Xem chi tiết
Phạm minh thu
Xem chi tiết
Thắng Nguyễn
30 tháng 3 2017 lúc 17:34

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)

Phạm minh thu
31 tháng 3 2017 lúc 18:29

Cái đó chỉ đúng khi 1/1+a=1/1+b=1/1+c thoi