Cách giải bài toán; có bao nhiều số có 2 chữ số co tổng là 11 và tích là 30
Viết thuật toán (bằng cách liệt kê các bước) giải bài toán giải bất phương trình ax+b>0 với a,b là số thực. Sau đó viết chương trình (dùng NNLT Python) giải bài toán đó
Cho bài toán sau:
“Khi viết thêm chữ số 2 vào bên phải của một số tự nhiên có hai chữ số thì số
đó tăng lên 785 đơn vị. Tìm số tự nhiên đó.”
1. Trình bày lời giải bài toán
2. Trình bày cách giải khác của bài toán và nêu cơ sở của các cách giải đó.
Bài 1 : Một Hcn có chu vi 600m. Nếu chiều dài giảm đi 1/5 của nó, chiều rộng tăng thêm 3/10 của nó thì chu vi Hcn không đổi. Tính chiều dài và chiều rộng của Hcn.
Giải bằng 2 cách :
Cách 1 : Giải bài toán bằng cách lập phương trình
Cách 2 ; Giải bài toán bằng cách lập hệ phương trình
Bài 1 : Một Hcn có chu vi 600m. Nếu chiều dài giảm đi 1/5 của nó, chiều rộng tăng thêm 3/10 của nó thì chu vi Hcn không đổi. Tính chiều dài và chiều rộng của Hcn.
Giải bằng 2 cách :
Cách 1 : Giải bài toán bằng cách lập phương trình
Cách 2 ; Giải bài toán bằng cách lập hệ phương trình
Giải bài toán bài 3 bằng cách lập hệ phương trình
Gọi số tờ tiền loại 200 ngàn đồng là x tờ (x>0)
Số tờ tiền loại 100 ngàn đồng là y tờ (y>0)
Do ba Lan đến được 36 tờ nên: \(x+y=36\)
Do tổng số tiền rút là 6 triệu đồng (\(=6000\) ngàn đồng) nên:
\(200x+100y=6000\Leftrightarrow2x+y=60\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=36\\2x+y=60\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
giải bài toán bằng cách lập pt
Gọi số giáo viên và số học sinh đi tham quan lần lượt là a,b
Theo đề, ta có:
a+b=150 và 63000a+45000b=7290000
=>a=30 và b=120
Giải bài toán bằng cách lập pt
Gọi số sách của giá sách thứ 1 và giá sách thứ 2 lần lượt là a,b(a,b∈N*,450>a,b; a>50)
Theo đề bài ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=450\\b+50=\dfrac{4}{5}\left(a-50\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=450-a\\450-a+50=\dfrac{4}{5}a-40\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=450-a\\\dfrac{9}{5}a=540\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=300\\b=150\end{matrix}\right.\)
Vậy...
Giải bài toán = cách lập PT ( làm = cách lớp 8 hộ em ạ )
Gọi \(x\left(x\in N\right)\) là số học sinh lớp 8A
Theo đề bài, ta có pt :
\(\left(\dfrac{3}{8}x+4\right)=50\%x\)
\(\Leftrightarrow\left(\dfrac{3}{8}x+4\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{3}{8}x-\dfrac{1}{2}x=-4\)
\(\Leftrightarrow-\dfrac{1}{8}x=-4\)
\(\Leftrightarrow x=32\left(tmdk\right)\)
Vậy lớp 8A có 32 học sinh
Giải bài toán bằng cách lập phương trình
a: =>3x=-7/2-1=-9/2
=>x=-3/2
b: =>2(x+4)+3x+2=70
=>2x+8+3x+2=70
=>5x+10=70
hay x=12
c: \(\Leftrightarrow\left(3x-5\right)\left(3x-5-6x-10\right)=0\)
=>(3x-5)(-3x-15)=0
=>x=5/3 hoặc x=-5
d: \(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=-12+x^2-4\)
\(\Leftrightarrow x^2+3x+2-5x+10=x^2-16\)
=>-2x+12=-16
=>-2x=-28
hay x=14(nhận)
Giải bài toán bằng cách lập phương trình
Gọi chiều rộng của mảnh đất hình chữ nhật là \(x\left(m,x>0\right)\)
Chiều dài của mảnh đất hình chữ nhật: \(\dfrac{720}{x}\left(m\right)\)
Chiều rộng mới của mảnh đất hình chữu nhật \(x+6\left(m\right)\)
Chiều dài mới của mảnh đất hình chữ nhật \(\dfrac{720}{x}-4\left(m\right)\)
Theo đề bài, ta có PT: \(\left(x+6\right)\left(\dfrac{720}{x}-4\right)=720\)
\(\Leftrightarrow720-4x+\dfrac{4320}{x}-24=720\)
\(\Leftrightarrow720x-4x^2+4320-24x-720x=0\)
\(\Leftrightarrow-4x^2-24x+4320=0\)
\(\Leftrightarrow\left(x-30\right)\left(x+36\right)=0\)
Vậy \(x=30\) (thoả mãn)
Chiều rộng của mảnh vườn hình chữ nhật 24m, chiều dài của mảnh vườn hình chữ nhật 30m
Chu vi của mảnh đất hình chữ nhật: \(\left(24+30\right).2=108m\)