anh chi giup em voi. em cam on a
Anh chi oi anh chi giup em bai nay voi a ( Anh chi nnao hieu duoc chu em danh thi anh chi giai ho em voi a em khong bat buoc anh chi phai giai ho em a )
1. Dien at hoac ac vao cho trong thich hop :
a) ban nh........
b ) hen nh........
c ) lua g........
d ) luoi m.......
f ) thit n........
g ) doa n.......
h ) l......... duong
i ) dao d.......
Em cam on anh chi neu giai cho em bai van nay thi em se like cho anh chi a em hua em khong that hua dau chi can anh chi nao tra loi nhanh em cho anh chi mot like con anh chi nao tra loi cham thi em khong the vuot duoc noi nen anh chi khac tra loi cham co the co gang a !
Em cam on a !
a,ban nhạc
b,hèn nhát
c,lừa gạt
f,thịt nạc
g,doạ nạt
h,lạc đường
i,dáo dác. Chị chỉ làm thế đc thôi,có đúng ko em?
a ban nhạc
b hẹn nhát
f thịt nạc
g dọa nạt
h lạc đường
xin lỗi có phần chị không dịch được
bản nhạc và lưới mác đúng ko e
khoa hoc trong tieng anh lA GI ? ANH CHI GIUP EM . EM CAM ON NHIEU !!!
Science em nhé!
Khoa học : Science
là science nha
tíc cho mình đi
giup em voi em cam on a
ve ho em bai dai duong menh mong voi, em cam on cac anh chi, my thuat lop 2 bo giao duc moi a!!!!!!!!
Anh chỉ copy trên mạng thôi em nhé , ảnh đây này :
Ừ không sao đâu em
Chúc em học tốt
Anh nghe nơi chương trình mới của bọn em khó hơn của bọn anh chị nhiều
Học tốt em nhé
giup em bai nay voi a em cam on nhieuuu
Cách làm ngắn gọn: \(5=\dfrac{5\left(x-1\right)}{x-1}=\dfrac{5x-5}{x-1}=\dfrac{5x+5-10}{x-1}\)
Do đó chọn \(f\left(x\right)=5x+5\) thế vào nhanh chóng tính ra kết quả giới hạn
Còn cách khác phức tạp hơn (có thể sử dụng cho tự luận):
Do \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) hữu hạn nên \(f\left(x\right)-10=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)-10=0\Rightarrow f\left(1\right)=10\)
Do đó:
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-10\right]\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}.\dfrac{\sqrt{x}+1}{\sqrt{4f\left(x\right)+9}+3}=5.\dfrac{1+1}{\sqrt{4f\left(1\right)+9}+3}=5.\dfrac{2}{\sqrt{4.10+9}+3}=...\)
giup em bai nay voi a em cam on nhieuuu
viet doan van ngan cam nhan cua em ve chi si trong bai tho dap da o con lon trong do co su dung cau ghep . moi nguoi giup em voi ak cam on
giup em voi, em cam on
a)\(R_1//R_2\Rightarrow R_{12}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{60\cdot40}{60+40}=24\Omega\)
\(I=\dfrac{U}{R_{tđ}}=\dfrac{12}{24}=0,5A\)
b)\(U_1=U_2=U=12V\)
\(P_1=\dfrac{U_1^2}{R_1}=\dfrac{12^2}{60}=2,4W\)
\(P_2=\dfrac{U_2^2}{R_2}=\dfrac{12^2}{40}=3,6W\)
c)CTM mới: \(R_3nt(R_1//R_2)\)
\(I'=\dfrac{I}{2}=\dfrac{0,5}{2}=0,25A\)
\(R_{tđ}=\dfrac{U}{I'}=\dfrac{12}{0,25}=48\Omega\)
\(R_3=R_{tđ}-R_{12}=48-24=24\Omega\)
Cac ban hay anh/chi giup minh voi. Minh can gap a. Mong moi nguoi trinh bay day du, ro rang. Minh (em) se tik cho mn da tra loi giup a. Minh (em) cam on nhieu !
De bai: So sanh hai phan so sau: \(\frac{2013.2012-1}{2013.2012}\)va \(\frac{2012.2011-1}{2012.2011}\)
Ta có:
+) \(\frac{2013.2012-1}{2013.2012}=1-\frac{1}{2013.2012}\)
+) \(\frac{2012.2011-1}{2012.2011}=1-\frac{1}{2012.2011}\)
Vì \(\frac{1}{2013.2012}< \frac{1}{2012.2011}\Rightarrow1-\frac{1}{2013.2012}>1-\frac{1}{2012.2011}\)
Vậy \(\frac{2013.2012-1}{2013.2012}>\frac{2012.2011-1}{2012.2011}\)
giup em voi em cam on nhieuuu
Từ đề bài ta suy ra tất cả các mặt bên của hộp đều là hình thoi (được ghép từ 2 tam giác đều)
\(\Rightarrow A'D=A'B=A'A=a\Rightarrow\) hình chiếu vuông góc của A' lên (ABCD) trùng trọng tâm E của tam giác ABD
\(\widehat{DBE}=\dfrac{1}{2}.60^0=30^0\Rightarrow\widehat{CBE}=\widehat{CBD}+\widehat{DBE}=60^0+30^0=90^0\)
\(\Rightarrow BC\perp BE\)
Mà \(A'E\perp\left(ABCD\right)\Rightarrow A'E\perp BC\)
\(\Rightarrow BC\perp\left(A'BE\right)\Rightarrow BC\perp A'B\)
\(\Rightarrow B'C'\perp A'B\)
\(AE=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow A'E=\sqrt{A'A^2-AE^2}=\dfrac{a\sqrt{6}}{3}\)
Qua C' dựng đường thẳng song song A'E cắt AC tại F \(\Rightarrow C'F=A'E=\dfrac{a\sqrt{6}}{3}\)
\(CF=AE=\dfrac{a\sqrt{3}}{3}\) ; \(AC=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\Rightarrow AF=AC+CF=\dfrac{4a\sqrt{3}}{3}\)
\(\Rightarrow AC'=\sqrt{AF^2+C'F^2}=a\sqrt{6}\)
\(CP=\dfrac{1}{3}CC'\) ; \(CN=\dfrac{1}{3}BC\)
Nối PN kéo dài cắt BB' tại J
Talet: \(\dfrac{CP}{BJ}=\dfrac{CN}{NB}=\dfrac{1}{2}\Rightarrow BJ=2CP=\dfrac{2a}{3}\Rightarrow\dfrac{BJ}{B'J}=\dfrac{\dfrac{2a}{3}}{a+\dfrac{2a}{3}}=\dfrac{2}{5}\)
Nối JM cắt A'B' kéo dài tại K
Talet: \(\dfrac{BM}{B'K}=\dfrac{BJ}{B'J}=\dfrac{2}{5}\Rightarrow B'K=\dfrac{5BM}{2}=\dfrac{5a}{4}\)
Nối MN cắt BD tại H và cắt CD tại G
Talet: \(\dfrac{CG}{BM}=\dfrac{CN}{BN}=\dfrac{1}{2}\Rightarrow CG=\dfrac{1}{2}BM=\dfrac{a}{4}\Rightarrow DG=a+\dfrac{a}{4}=\dfrac{5a}{4}\)
Talet: \(\dfrac{BH}{DH}=\dfrac{BM}{DG}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (1)
Nối GP cắt C'D' tại Q
Talet: \(\dfrac{CG}{C'Q}=\dfrac{CP}{C'P}=\dfrac{1}{2}\Rightarrow C'Q=2CG=\dfrac{a}{2}\)
Nối QK cắt B'D' tại L
Talet: \(\dfrac{D'L}{B'L}=\dfrac{D'Q}{B'K}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (2)
(1);(2) \(\Rightarrow D'L=BH\) (do \(BD=B'D'\))
Nối HL cắt BD' tại I
Talet: \(\dfrac{D'I}{IB}=\dfrac{D'L}{BH}=1\)
Gọi F là giao điểm QK và A'D', O là giao điểm JK và A'A
Ta đồng thời suy ra luôn NPQFOM là thiết diện của (MNP) và chóp